Suppr超能文献

靶向蛋白质组学和代谢组学在糖尿病肾病识别与监测中的潜在应用

The Potential Use of Targeted Proteomics and Metabolomics for the Identification and Monitoring of Diabetic Kidney Disease.

作者信息

Van Roy Nele, Speeckaert Marijn M

机构信息

Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium.

Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium.

出版信息

J Pers Med. 2024 Oct 11;14(10):1054. doi: 10.3390/jpm14101054.

Abstract

Diabetic kidney disease (DKD) is a prevalent microvascular complication of diabetes mellitus and is associated with a significantly worse prognosis compared to diabetic patients without kidney involvement, other microvascular complications, or non-diabetic chronic kidney disease, due to its higher risk of cardiovascular events, faster progression to end-stage kidney disease, and increased mortality. In clinical practice, diagnosis is based on estimated glomerular filtration rate (eGFR) and albuminuria. However, given the limitations of these diagnostic markers, novel biomarkers must be identified. Omics is a new field of study involving the comprehensive analysis of various types of biological data at the molecular level. In different fields, they have shown promising results in (early) detection of diseases, personalized medicine, therapeutic monitoring, and understanding pathogenesis. DKD is primarily utilized in scientific research and has not yet been implemented in routine clinical practice. The aim of this review is to provide an overview of currently available data on targeted omics. After an extensive literature search, 25 different (panels of) omics were withheld and analyzed. Both serum/plasma and urine proteomics and metabolomics have been described with varying degrees of evidence. For all omics, there is still a relative paucity of data from large, prospective, longitudinal cohorts, presumably because of the heterogeneity of DKD and the lack of patient selection in studies, the complexity of omics technologies, and various practical and ethical considerations (e.g., limited accessibility, cost, and privacy concerns).

摘要

糖尿病肾病(DKD)是糖尿病常见的微血管并发症,与未累及肾脏的糖尿病患者、其他微血管并发症患者或非糖尿病慢性肾病患者相比,其预后明显更差,原因在于其心血管事件风险更高、进展至终末期肾病的速度更快以及死亡率增加。在临床实践中,诊断基于估计肾小球滤过率(eGFR)和蛋白尿。然而,鉴于这些诊断标志物的局限性,必须识别新的生物标志物。组学是一个新的研究领域,涉及在分子水平对各类生物数据进行综合分析。在不同领域,它们在疾病(早期)检测、个性化医疗、治疗监测以及理解发病机制方面已显示出有前景的结果。DKD主要用于科学研究,尚未在常规临床实践中实施。本综述的目的是概述目前关于靶向组学的可用数据。经过广泛的文献检索,筛选并分析了25种不同的(组学)组合。血清/血浆和尿液蛋白质组学以及代谢组学均有不同程度的证据描述。对于所有组学而言,来自大型、前瞻性、纵向队列的数据仍然相对较少,推测原因是DKD的异质性、研究中缺乏患者选择、组学技术的复杂性以及各种实际和伦理考量(例如可及性有限、成本和隐私问题)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed8a/11508375/143c8de9d91b/jpm-14-01054-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验