Suppr超能文献

StereoSiTE:一种对空间组织 iTME 中细胞邻居进行空间和定量分析的框架。

StereoSiTE: a framework to spatially and quantitatively profile the cellular neighborhood organized iTME.

机构信息

BGI Research, Chongqing 401329, PR China.

BGI Research, Shenzhen 518083, PR China.

出版信息

Gigascience. 2024 Jan 2;13. doi: 10.1093/gigascience/giae078.

Abstract

BACKGROUND

Spatial transcriptome (ST) technologies are emerging as powerful tools for studying tumor biology. However, existing tools for analyzing ST data are limited, as they mainly rely on algorithms developed for single-cell RNA sequencing data and do not fully utilize the spatial information. While some algorithms have been developed for ST data, they are often designed for specific tasks, lacking a comprehensive analytical framework for leveraging spatial information.

RESULTS

In this study, we present StereoSiTE, an analytical framework that combines open-source bioinformatics tools with custom algorithms to accurately infer the functional spatial cell interaction intensity (SCII) within the cellular neighborhood (CN) of interest. We applied StereoSiTE to decode ST datasets from xenograft models and found that the CN efficiently distinguished different cellular contexts, while the SCII analysis provided more precise insights into intercellular interactions by incorporating spatial information. By applying StereoSiTE to multiple samples, we successfully identified a CN region dominated by neutrophils, suggesting their potential role in remodeling the immune tumor microenvironment (iTME) after treatment. Moreover, the SCII analysis within the CN region revealed neutrophil-mediated communication, supported by pathway enrichment, transcription factor regulon activities, and protein-protein interactions.

CONCLUSIONS

StereoSiTE represents a promising framework for unraveling the mechanisms underlying treatment response within the iTME by leveraging CN-based tissue domain identification and SCII-inferred spatial intercellular interactions. The software is designed to be scalable, modular, and user-friendly, making it accessible to a wide range of researchers.

摘要

背景

空间转录组(ST)技术正成为研究肿瘤生物学的有力工具。然而,现有的 ST 数据分析工具受到限制,因为它们主要依赖于为单细胞 RNA 测序数据开发的算法,而不能充分利用空间信息。虽然已经开发了一些用于 ST 数据的算法,但它们通常是为特定任务设计的,缺乏利用空间信息的综合分析框架。

结果

在这项研究中,我们提出了 StereoSiTE,这是一个分析框架,它将开源生物信息学工具与定制算法相结合,以准确推断感兴趣的细胞邻域(CN)内的功能空间细胞相互作用强度(SCII)。我们应用 StereoSiTE 对异种移植模型的 ST 数据集进行解码,发现 CN 有效地区分了不同的细胞环境,而 SCII 分析通过纳入空间信息提供了更精确的细胞间相互作用见解。通过对多个样本应用 StereoSiTE,我们成功地确定了一个以中性粒细胞为主的 CN 区域,提示它们在治疗后重塑免疫肿瘤微环境(iTME)中的潜在作用。此外,在 CN 区域内进行的 SCII 分析通过途径富集、转录因子调控子活性和蛋白质-蛋白质相互作用,支持了中性粒细胞介导的通信。

结论

StereoSiTE 通过利用基于 CN 的组织域识别和推断的空间细胞间相互作用,代表了一种有前途的框架,可以揭示 iTME 中治疗反应的机制。该软件旨在具有可扩展性、模块化和用户友好性,使广泛的研究人员都能够使用它。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13a2/11503478/ede6691c3b01/giae078fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验