Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, China.
Nat Commun. 2024 Aug 18;15(1):7101. doi: 10.1038/s41467-024-51329-2.
The inference of cell-cell communication (CCC) is crucial for a better understanding of complex cellular dynamics and regulatory mechanisms in biological systems. However, accurately inferring spatial CCCs at single-cell resolution remains a significant challenge. To address this issue, we present a versatile method, called DeepTalk, to infer spatial CCC at single-cell resolution by integrating single-cell RNA sequencing (scRNA-seq) data and spatial transcriptomics (ST) data. DeepTalk utilizes graph attention network (GAT) to integrate scRNA-seq and ST data, which enables accurate cell-type identification for single-cell ST data and deconvolution for spot-based ST data. Then, DeepTalk can capture the connections among cells at multiple levels using subgraph-based GAT, and further achieve spatially resolved CCC inference at single-cell resolution. DeepTalk achieves excellent performance in discovering meaningful spatial CCCs on multiple cross-platform datasets, which demonstrates its superior ability to dissect cellular behavior within intricate biological processes.
细胞间通讯(CCC)的推断对于更好地理解生物系统中复杂的细胞动态和调控机制至关重要。然而,准确推断单细胞分辨率下的空间 CCC 仍然是一个重大挑战。为了解决这个问题,我们提出了一种通用的方法,称为 DeepTalk,通过整合单细胞 RNA 测序(scRNA-seq)数据和空间转录组学(ST)数据来推断单细胞分辨率下的空间 CCC。DeepTalk 利用图注意力网络(GAT)整合 scRNA-seq 和 ST 数据,这使得单细胞 ST 数据的细胞类型识别和基于点的 ST 数据的去卷积都更加准确。然后,DeepTalk 可以使用基于子图的 GAT 在多个层次上捕获细胞之间的连接,并进一步实现单细胞分辨率下的空间分辨 CCC 推断。DeepTalk 在多个跨平台数据集上发现有意义的空间 CCC 方面表现出色,这表明它在剖析复杂生物过程中的细胞行为方面具有卓越的能力。