Stubbs David B, Ruzicka Jan A, Taylor Ethan W
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC 27402-6170, USA.
Pathogens. 2024 Sep 25;13(10):829. doi: 10.3390/pathogens13100829.
Sequence analysis of the Zaire ebolavirus (EBOV) polymerase (L gene) mRNA, using online tools, identified a highly ranked -1 programmed ribosomal frameshift (FS) signal including an ideal slippery sequence heptamer (UUUAAAA), with an overlapping coding region featuring two tandem UGA codons, immediately followed by an RNA region that is the inverse complement (antisense) to a region of the mRNA of the selenoprotein iodothyronine deiodinase II (DIO2). This antisense interaction was confirmed in vitro via electrophoretic gel shift assay, using cDNAs at the EBOV and DIO2 segments. The formation of a duplex between the two mRNAs could trigger the ribosomal frameshift, by mimicking the enhancing role of a pseudoknot structure, while providing access to the selenocysteine insertion sequence (SECIS) element contained in the DIO2 mRNA. This process would allow the -1 frame UGA codons to be recoded as selenocysteine, forming part of a C-terminal module in a low abundance truncated isoform of the viral polymerase, potentially functioning in a redox role. Remarkably, 90 bases downstream of the -1 FS site, an active +1 FS site can be demonstrated, which, via a return to the zero frame, would enable the attachment of the entire C-terminal of the polymerase protein. Using a construct with upstream and downstream reporter genes, spanning a wildtype or mutated viral insert, we show significant +1 ribosomal frameshifting at this site. Acting singly or together, frameshifting at these sites (both of which are highly conserved in EBOV strains) could enable the expression of several modified isoforms of the polymerase. The 3D modeling of the predicted EBOV polymerase FS variants using the AI tool, AlphaFold, reveals a peroxiredoxin-like active site with arginine and threonine residues adjacent to a putative UGA-encoded selenocysteine, located on the back of the polymerase "hand". This module could serve to protect the viral RNA from peroxidative damage.
利用在线工具对扎伊尔埃博拉病毒(EBOV)聚合酶(L基因)mRNA进行序列分析,确定了一个高度排名的-1程序性核糖体移码(FS)信号,其中包括一个理想的七聚体滑序列(UUUAAAA),其重叠编码区有两个串联的UGA密码子,紧接着是一个RNA区域,该区域与硒蛋白碘甲状腺原氨酸脱碘酶II(DIO2)mRNA的一个区域呈反向互补(反义)。通过电泳凝胶迁移试验,利用EBOV和DIO2片段的cDNA在体外证实了这种反义相互作用。两个mRNA之间形成双链体可以通过模拟假结结构的增强作用来触发核糖体移码,同时提供对DIO2 mRNA中包含的硒代半胱氨酸插入序列(SECIS)元件的访问。这个过程将使-1框架UGA密码子被重新编码为硒代半胱氨酸,形成病毒聚合酶低丰度截短异构体C端模块的一部分,可能发挥氧化还原作用。值得注意的是,在-1 FS位点下游90个碱基处,可以证明一个活跃的+1 FS位点,通过回到零框架,它将使聚合酶蛋白的整个C端得以附着。使用一个带有上游和下游报告基因的构建体,跨越野生型或突变的病毒插入片段,我们显示在这个位点有显著的+1核糖体移码。单独或共同作用,这些位点(在EBOV毒株中都高度保守)的移码可以使几种聚合酶修饰异构体得以表达。使用人工智能工具AlphaFold对预测的EBOV聚合酶FS变体进行三维建模,揭示了一个过氧化物酶体增殖物激活受体样活性位点,其精氨酸和苏氨酸残基与一个假定的UGA编码的硒代半胱氨酸相邻,位于聚合酶“手”的背面。这个模块可以保护病毒RNA免受过氧化损伤。