Suppr超能文献

CsPbBr/Ag混合微腔中超稳定且低阈值的双光子泵浦放大自发辐射

Ultrastable and Low-Threshold Two-Photon-Pumped Amplified Spontaneous Emission from CsPbBr/Ag Hybrid Microcavity.

作者信息

Li Shulei, Zhang Yatao, Zhao Zhiran, Cheng Shiyi, Li Zixin, Liu Yuanyuan, Deng Quantong, Dai Jun, Zheng Yunbao, Lin Zhenxu

机构信息

School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China.

School of Material Science and Engineering, Hanshan Normal University, Chaozhou 521041, China.

出版信息

Nanomaterials (Basel). 2024 Oct 10;14(20):1622. doi: 10.3390/nano14201622.

Abstract

Halide perovskite materials have garnered significant research attention due to their remarkable performance in both photoharvesting photovoltaics and photoemission applications. Recently, self-assembled CsPbBr superstructures (SSs) have been demonstrated to be promising lasing materials. In this study, we report the ultrastable two-photon-pumped amplified stimulated emission from a CsPbBr SS/Ag hybrid microcavity with a low threshold of 0.8 mJ/cm at room temperature. The experimental results combined with numerical simulations show that the CsPbBr SS exhibits a significant enhancement in the electromagnetic properties in the hybrid microcavity on Ag film, leading to the uniform spatial temperature distribution under the irradiation of a pulsed laser, which is conducive to facilitate the recrystallization process of the QDs and improve their structural integrity and optical properties. This study provides a new idea for the application of CsPbBr/Ag hybrid microcavity in photonic devices, demonstrating its potential in efficient optical amplification and upconversion lasers.

摘要

卤化物钙钛矿材料因其在光捕获光伏和光发射应用中的卓越性能而受到了广泛的研究关注。最近,自组装的CsPbBr超结构(SSs)已被证明是有前途的激光材料。在本研究中,我们报道了在室温下,来自CsPbBr SS/Ag混合微腔的超稳定双光子泵浦放大受激辐射,其阈值低至0.8 mJ/cm 。实验结果与数值模拟相结合表明,CsPbBr SS在Ag膜上的混合微腔中电磁特性显著增强,导致在脉冲激光照射下空间温度分布均匀,这有利于促进量子点的再结晶过程并改善其结构完整性和光学特性。本研究为CsPbBr/Ag混合微腔在光子器件中的应用提供了新思路,展示了其在高效光放大和上转换激光器方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eaf5/11510617/c657e8344ccc/nanomaterials-14-01622-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验