Suppr超能文献

通过脉冲激光沉积技术制备的纳米晶/非晶同质复合钛酸钡薄膜的巨介电常数

Colossal Dielectric Constant of Nanocrystalline/Amorphous Homo-Composite BaTiO Films Deposited via Pulsed Laser Deposition Technique.

作者信息

Kondo Shinya, Murakami Taichi, Pichon Loick, Leblanc-Lavoie Joël, Teranishi Takashi, Kishimoto Akira, El Khakani My Ali

机构信息

Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.

Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada.

出版信息

Nanomaterials (Basel). 2024 Oct 18;14(20):1677. doi: 10.3390/nano14201677.

Abstract

We report the pulsed laser deposition (PLD) of nanocrystalline/amorphous homo-composite BaTiO (BTO) films exhibiting an unprecedented combination of a colossal dielectric constant () and extremely low dielectric loss (tan ). By varying the substrate deposition temperature () over a wide range (300-800 °C), we identified = 550 °C as the optimal temperature for growing BTO films with an as high as 3060 and a tan as low as 0.04 (at 20 kHz). High-resolution transmission electron microscopy revealed that the PLD-BTO films consist of BTO nanocrystals (20-30 nm size) embedded within an otherwise amorphous BTO matrix. The impressive dielectric behavior is attributed to the combination of highly crystallized small BTO nanograins, which amplify interfacial polarization, and the surrounding amorphous matrix, which effectively isolates the nanograins from charge carrier transport. Our findings could facilitate the development of next-generation integrated dielectric devices.

摘要

我们报道了纳米晶/非晶同质复合钛酸钡(BTO)薄膜的脉冲激光沉积(PLD),该薄膜展现出了介电常数()极大与介电损耗(tan)极低这一前所未有的组合。通过在较宽范围(300 - 800 °C)内改变衬底沉积温度(),我们确定550 °C为生长BTO薄膜的最佳温度,此时介电常数高达约3060,介电损耗正切(tan)低至0.04(在20 kHz时)。高分辨率透射电子显微镜显示,PLD - BTO薄膜由嵌入非晶BTO基体中的BTO纳米晶体(尺寸约20 - 30 nm)组成。这种令人印象深刻的介电行为归因于高度结晶的小BTO纳米颗粒与周围非晶基体的组合,前者放大了界面极化,后者有效地将纳米颗粒与电荷载流子传输隔离开来。我们的研究结果可能会推动下一代集成介电器件的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c0/11510155/043bbfb1075a/nanomaterials-14-01677-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验