文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于最小绝对值收缩和选择算子(LASSO)方法识别 fMRI 有效连接研究中的脑网络结构。

Identifying Brain Network Structure for an fMRI Effective Connectivity Study Using the Least Absolute Shrinkage and Selection Operator (LASSO) Method.

机构信息

Department of Surgery & Cancer, Hammersmith Campus, Imperial College London, Du Cane Road, London W12 0HS, UK.

Key Laboratory of Language, Cognition and Computation of Ministry of Industry and Information Technology, School of Foreign Languages, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing 100081, China.

出版信息

Tomography. 2024 Sep 30;10(10):1564-1576. doi: 10.3390/tomography10100115.


DOI:10.3390/tomography10100115
PMID:39453032
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11511430/
Abstract

Studying causality relationships between different brain regions using the fMRI method has attracted great attention. To investigate causality relationships between different brain regions, we need to identify both the brain network structure and the influence magnitude. Most current methods concentrate on magnitude estimation, but not on identifying the connection or structure of the network. To address this problem, we proposed a nonlinear system identification method, in which a polynomial kernel was adopted to approximate the relation between the system inputs and outputs. However, this method has an overfitting problem for modelling the input-output relation if we apply the method to model the brain network directly. To overcome this limitation, this study applied the least absolute shrinkage and selection operator (LASSO) model selection method to identify both brain region networks and the connection strength (system coefficients). From these coefficients, the causality influence is derived from the identified structure. The method was verified based on the human visual cortex with phase-encoded designs. The functional data were pre-processed with motion correction. The visual cortex brain regions were defined based on a retinotopic mapping method. An eight-connection visual system network was adopted to validate the method. The proposed method was able to identify both the connected visual networks and associated coefficients from the LASSO model selection. The result showed that this method can be applied to identify both network structures and associated causalities between different brain regions. System identification with LASSO model selection algorithm is a powerful approach for fMRI effective connectivity study.

摘要

使用 fMRI 方法研究不同脑区之间的因果关系引起了极大的关注。为了研究不同脑区之间的因果关系,我们需要识别脑网络结构和影响幅度。目前大多数方法都集中在幅度估计上,而不是识别网络的连接或结构。为了解决这个问题,我们提出了一种非线性系统识别方法,其中采用多项式核来逼近系统输入和输出之间的关系。然而,如果我们直接将该方法应用于脑网络建模,该方法在建模输入输出关系时存在过拟合问题。为了克服这一限制,本研究应用最小绝对收缩和选择算子(LASSO)模型选择方法来识别脑区网络和连接强度(系统系数)。从这些系数中,可以从识别的结构中得出因果影响。该方法基于相位编码设计的人类视觉皮层进行了验证。功能数据经过运动校正预处理。视觉皮层脑区是基于视网膜映射方法定义的。采用八连接视觉系统网络验证了该方法。该方法能够从 LASSO 模型选择中识别连接的视觉网络和相关系数。结果表明,该方法可用于识别不同脑区之间的网络结构和相关因果关系。使用 LASSO 模型选择算法的系统识别是 fMRI 有效连接研究的一种有力方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/7371b31ee6da/tomography-10-00115-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/880e11f8ae16/tomography-10-00115-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/8a601014ab0d/tomography-10-00115-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/c2ca2734b1f6/tomography-10-00115-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/aa45da0e4bf4/tomography-10-00115-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/85f08ac3a59b/tomography-10-00115-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/42acdddd7e79/tomography-10-00115-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/eaccb7bae4ab/tomography-10-00115-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/d7e7a9defd71/tomography-10-00115-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/7371b31ee6da/tomography-10-00115-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/880e11f8ae16/tomography-10-00115-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/8a601014ab0d/tomography-10-00115-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/c2ca2734b1f6/tomography-10-00115-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/aa45da0e4bf4/tomography-10-00115-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/85f08ac3a59b/tomography-10-00115-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/42acdddd7e79/tomography-10-00115-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/eaccb7bae4ab/tomography-10-00115-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/d7e7a9defd71/tomography-10-00115-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/11511430/7371b31ee6da/tomography-10-00115-g005.jpg

相似文献

[1]
Identifying Brain Network Structure for an fMRI Effective Connectivity Study Using the Least Absolute Shrinkage and Selection Operator (LASSO) Method.

Tomography. 2024-9-30

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Short-Term Memory Impairment

2025-1

[4]
Voxel-to-voxel predictive models reveal unexpected structure in unexplained variance.

Neuroimage. 2021-9

[5]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[6]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[7]
[Volume and health outcomes: evidence from systematic reviews and from evaluation of Italian hospital data].

Epidemiol Prev. 2013

[8]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[9]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[10]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2017-12-22

本文引用的文献

[1]
Exploring nonlinear dynamics in brain functionality through phase portraits and fuzzy recurrence plots.

Chaos. 2024-10-1

[2]
Non-Asymptotic Guarantees for Reliable Identification of Granger Causality via the LASSO.

IEEE Trans Inf Theory. 2023-11

[3]
The Hopf whole-brain model and its linear approximation.

Sci Rep. 2024-1-31

[4]
Dynamical flexible inference of nonlinear latent factors and structures in neural population activity.

Nat Biomed Eng. 2024-1

[5]
Macroscopic resting-state brain dynamics are best described by linear models.

Nat Biomed Eng. 2024-1

[6]
Dementia classification using a graph neural network on imaging of effective brain connectivity.

Comput Biol Med. 2024-1

[7]
Granger Causality: A Review and Recent Advances.

Annu Rev Stat Appl. 2022-3

[8]
High-dimensional multivariate autoregressive model estimation of human electrophysiological data using fMRI priors.

Neuroimage. 2023-8-15

[9]
Brain Synchronization and Multivariate Autoregressive (MVAR) Modeling in Cognitive Neurodynamics.

Front Syst Neurosci. 2022-6-24

[10]
Robust Detection of Impaired Resting State Functional Connectivity Networks in Alzheimer's Disease Using Elastic Net Regularized Regression.

Front Aging Neurosci. 2017-1-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索