Suppr超能文献

基于有效大脑连接成像的图神经网络对痴呆症的分类。

Dementia classification using a graph neural network on imaging of effective brain connectivity.

机构信息

School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire, MK43 0AL, UK; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.

School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire, MK43 0AL, UK.

出版信息

Comput Biol Med. 2024 Jan;168:107701. doi: 10.1016/j.compbiomed.2023.107701. Epub 2023 Nov 15.

Abstract

Alzheimer's disease (AD) and Parkinson's disease (PD) are two of the most common forms of neurodegenerative diseases. The literature suggests that effective brain connectivity (EBC) has the potential to track differences between AD, PD and healthy controls (HC). However, how to effectively use EBC estimations for the research of disease diagnosis remains an open problem. To deal with complex brain networks, graph neural network (GNN) has been increasingly popular in very recent years and the effectiveness of combining EBC and GNN techniques has been unexplored in the field of dementia diagnosis. In this study, a novel directed structure learning GNN (DSL-GNN) was developed and performed on the imaging of EBC estimations and power spectrum density (PSD) features. In comparison to the previous studies on GNN, our proposed approach enhanced the functionality for processing directional information, which builds the basis for more efficiently performing GNN on EBC. Another contribution of this study is the creation of a new framework for applying univariate and multivariate features simultaneously in a classification task. The proposed framework and DSL-GNN are validated in four discrimination tasks and our approach exhibited the best performance, against the existing methods, with the highest accuracy of 94.0% (AD vs. HC), 94.2% (PD vs. HC), 97.4% (AD vs. PD) and 93.0% (AD vs. PD vs. HC). In a word, this research provides a robust analytical framework to deal with complex brain networks containing causal directional information and implies promising potential in the diagnosis of two of the most common neurodegenerative conditions.

摘要

阿尔茨海默病(AD)和帕金森病(PD)是两种最常见的神经退行性疾病。文献表明,有效的大脑连接(EBC)有可能追踪 AD、PD 和健康对照(HC)之间的差异。然而,如何有效地将 EBC 估计用于疾病诊断研究仍然是一个悬而未决的问题。为了处理复杂的大脑网络,图神经网络(GNN)在最近几年越来越受欢迎,将 EBC 和 GNN 技术结合的有效性在痴呆症诊断领域尚未得到探索。在这项研究中,开发了一种新的有向结构学习 GNN(DSL-GNN),并对 EBC 估计和功率谱密度(PSD)特征的成像进行了研究。与之前关于 GNN 的研究相比,我们提出的方法增强了处理定向信息的功能,为在 EBC 上更有效地进行 GNN 奠定了基础。本研究的另一个贡献是创建了一个新的框架,用于在分类任务中同时应用单变量和多变量特征。在所提出的框架和 DSL-GNN 中,在四个判别任务中进行了验证,我们的方法表现出了最佳性能,与现有的方法相比,准确率最高,AD 与 HC 为 94.0%,PD 与 HC 为 94.2%,AD 与 PD 为 97.4%,AD 与 PD 与 HC 为 93.0%。总之,这项研究提供了一个强大的分析框架来处理包含因果定向信息的复杂大脑网络,并在两种最常见的神经退行性疾病的诊断中具有潜在的应用前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验