Suppr超能文献

对称约瑟夫森结中的超流整流和磁手征效应

Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions.

作者信息

Baumgartner Christian, Fuchs Lorenz, Costa Andreas, Reinhardt Simon, Gronin Sergei, Gardner Geoffrey C, Lindemann Tyler, Manfra Michael J, Faria Junior Paulo E, Kochan Denis, Fabian Jaroslav, Paradiso Nicola, Strunk Christoph

机构信息

Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany.

Institut für Theoretische Physik, University of Regensburg, Regensburg, Germany.

出版信息

Nat Nanotechnol. 2022 Jan;17(1):39-44. doi: 10.1038/s41565-021-01009-9. Epub 2021 Nov 18.

Abstract

Transport is non-reciprocal when not only the sign, but also the absolute value of the current depends on the polarity of the applied voltage. It requires simultaneously broken inversion and time-reversal symmetries, for example, by an interplay of spin-orbit coupling and magnetic field. Hitherto, observation of nonreciprocity was tied to resistivity, and dissipationless non-reciprocal circuit elements were elusive. Here we engineer fully superconducting non-reciprocal devices based on highly transparent Josephson junctions fabricated on InAs quantum wells. We demonstrate supercurrent rectification far below the transition temperature. By measuring Josephson inductance, we can link the non-reciprocal supercurrent to an asymmetry of the current-phase relation, and directly derive the supercurrent magnetochiral anisotropy coefficient. A semiquantitative model explains well the main features of our experimental data. Non-reciprocal Josephson junctions have the potential to become for superconducting circuits what pn junctions are for traditional electronics, enabling new non-dissipative circuit elements.

摘要

当电流的符号以及绝对值都取决于所施加电压的极性时,输运就是非互易的。这需要同时打破空间反演对称性和时间反演对称性,例如,通过自旋 - 轨道耦合与磁场的相互作用来实现。迄今为止,非互易性的观测与电阻率相关,而无耗散的非互易电路元件难以捉摸。在此,我们基于在砷化铟量子阱上制备的高透明约瑟夫森结设计了全超导非互易器件。我们展示了在远低于转变温度时的超电流整流现象。通过测量约瑟夫森电感,我们可以将非互易超电流与电流 - 相位关系的不对称性联系起来,并直接推导出超电流磁手性各向异性系数。一个半定量模型很好地解释了我们实验数据的主要特征。非互易约瑟夫森结有可能成为超导电路中的pn结对于传统电子学那样的元件,从而实现新型无耗散电路元件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验