Suppr超能文献

使用脑电图源空间功能连接特征来缓解驾驶疲劳分类中个体差异的聚类方法。

Clustering for mitigating subject variability in driving fatigue classification using electroencephalography source-space functional connectivity features.

机构信息

School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.

Macquarie University Hearing, Macquarie University, Sydney, Australia.

出版信息

J Neural Eng. 2024 Nov 5;21(6). doi: 10.1088/1741-2552/ad8b6d.

Abstract

While Electroencephalography (EEG)-based driver fatigue state classification models have demonstrated effectiveness, their real-world application remains uncertain. The substantial variability in EEG signals among individuals poses a challenge in developing a universal model, often necessitating retraining with the introduction of new subjects. However, obtaining sufficient data for retraining, especially fatigue data for new subjects, is impractical in real-world settings.In response to these challenges, this paper introduces a hybrid solution for fatigue detection that combines clustering with classification. Unsupervised clustering groups subjects based on their EEG functional connectivity (FC) in an alert state, and classification models are subsequently applied to each cluster for predicting alert and fatigue states.. Results indicate that classification on clusters achieves higher accuracy than scenarios without clustering, suggesting successful grouping of subjects with similar FC characteristics through clustering, thereby enhancing the classification process.Furthermore, the proposed hybrid method ensures a practical and realistic retraining process, improving the adaptability and effectiveness of the fatigue detection system in real-world applications.

摘要

虽然基于脑电图 (EEG) 的驾驶员疲劳状态分类模型已经证明了其有效性,但它们在实际中的应用仍然存在不确定性。个体之间 EEG 信号的巨大可变性在开发通用模型时带来了挑战,通常需要引入新的个体进行重新训练。然而,在实际情况下,获得足够的重新训练数据,特别是新个体的疲劳数据是不切实际的。

针对这些挑战,本文提出了一种结合聚类和分类的混合疲劳检测解决方案。无监督聚类根据被试者在警觉状态下的脑电图功能连接(FC)对其进行分组,然后对每个聚类应用分类模型来预测警觉和疲劳状态。结果表明,聚类上的分类比没有聚类的情况下更准确,这表明通过聚类成功地对具有相似 FC 特征的被试者进行了分组,从而增强了分类过程。

此外,所提出的混合方法确保了一个实际且现实的重新训练过程,提高了疲劳检测系统在实际应用中的适应性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验