Kanwal Shamsa, Bibi Sehrish, Haleem Rabia, Waqar Kashif, Mir Sadullah, Maalik Aneela, Sabahat Sana, Hassan Safia, Awwad Nasser S, Ibrahium Hala A, Alturaifi Huriyyah A
Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
Department of Chemistry, Kohat University of Science and Technology Kohat, KPK, Pakistan.
Int J Biol Macromol. 2024 Dec;282(Pt 2):136715. doi: 10.1016/j.ijbiomac.2024.136715. Epub 2024 Oct 23.
Chitosan (Cs), a naturally occurring biopolymer, has garnered significant interest due to its inherent biocompatibility, biodegradability, and minimal toxicity. This study investigates the effectiveness of various reaction strategies, including acylation, acetylation, and carboxymethylation, to enhance the solubility profile of Cs. This review provides a detailed examination of the rapidly developing field of Cs-based metal complexes and nanoparticles. It delves into the diverse synthesis methodologies employed for their fabrication, specifically focusing on ionic gelation and in-situ reduction techniques. Furthermore, the review offers a comprehensive analysis of the characterization techniques utilized to elucidate the physicochemical properties of these complexes. A range of analytical techniques are utilized, including Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and others. By comprehensively exploring a wide range of applications, the review emphasizes the significant potential of Cs in various scientific disciplines. Diagrams, figures, and tables effectively illustrate the synthesis processes, promoting a clear understanding for the reader. Chitosan-metal nanostructures/nanocomposites significantly enhance antimicrobial efficacy, drug delivery, and environmental remediation compared to standard chitosan composites. The integration of metal nanoparticles, such as silver or gold, improves chitosan's effectiveness against a range of pathogens, including resistant bacteria. These nanocomposites facilitate targeted drug delivery and controlled release, boosting therapeutic bioavailability. Additionally, they enhance chitosan's ability to absorb heavy metals and dyes from wastewater, making them effective for environmental applications. Overall, chitosan-metal nanocomposites leverage chitosan's biocompatibility while offering improved functionalities, making them promising materials for diverse applications. This paper sheds light on recent advancements in the applications of Cs metal complexes for various purposes, including cancer treatment, drug delivery enhancement, and the prevention of bacterial and fungal infections.
壳聚糖(Cs)是一种天然存在的生物聚合物,因其固有的生物相容性、生物降解性和极低的毒性而备受关注。本研究考察了包括酰化、乙酰化和羧甲基化在内的各种反应策略对提高壳聚糖溶解度的有效性。本综述详细审视了基于壳聚糖的金属配合物和纳米颗粒这一快速发展的领域。它深入探讨了用于制备它们的各种合成方法,特别关注离子凝胶化和原位还原技术。此外,该综述还对用于阐明这些配合物物理化学性质的表征技术进行了全面分析。使用了一系列分析技术,包括紫外可见光谱(UV-Vis)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)等。通过全面探索广泛的应用,该综述强调了壳聚糖在各个科学学科中的巨大潜力。图表和表格有效地说明了合成过程,有助于读者清晰理解。与标准壳聚糖复合材料相比,壳聚糖-金属纳米结构/纳米复合材料显著提高了抗菌功效、药物递送能力和环境修复能力。金属纳米颗粒(如银或金)的整合提高了壳聚糖对包括耐药细菌在内的一系列病原体的有效性。这些纳米复合材料促进了靶向药物递送和控释,提高了治疗生物利用度。此外,它们增强了壳聚糖从废水中吸收重金属和染料的能力,使其在环境应用中有效。总体而言,壳聚糖-金属纳米复合材料利用了壳聚糖的生物相容性,同时提供了改进的功能,使其成为用于各种应用的有前途的材料。本文揭示了壳聚糖金属配合物在各种用途(包括癌症治疗、增强药物递送以及预防细菌和真菌感染)应用中的最新进展。