Cowie Anna E, Pereira Jose H, DeGiovanni Andy, McAndrew Ryan P, Palayam Malathy, Peek Jedidiah O, Muchlinski Andrew J, Yoshikuni Yasuo, Shabek Nitzan, Adams Paul D, Zerbe Philipp
Department of Plant Biology, University of California-Davis, Davis, California, USA.
Technology Division, Joint BioEnergy Institute, Emeryville, California, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
J Biol Chem. 2024 Dec;300(12):107921. doi: 10.1016/j.jbc.2024.107921. Epub 2024 Oct 23.
Diterpenoid natural products serve critical functions in plant development and ecological adaptation and many diterpenoids have economic value as bioproducts. The family of class II diterpene synthases catalyzes the committed reactions in diterpenoid biosynthesis, converting a common geranylgeranyl diphosphate precursor into different bicyclic prenyl diphosphate scaffolds. Enzymatic rearrangement and modification of these precursors generate the diversity of bioactive diterpenoids. We report the crystal structure of Grindelia robusta 7,13-copalyl diphosphate synthase, GrTPS2, at 2.1 Å of resolution. GrTPS2 catalyzes the committed reaction in the biosynthesis of grindelic acid, which represents the signature metabolite in species of gumweed (Grindelia spp., Asteraceae). Grindelic acid has been explored as a potential source for drug leads and biofuel production. The GrTPS2 crystal structure adopts the conserved three-domain fold of class II diterpene synthases featuring a functional active site in the γβ-domain and a vestigial ɑ-domain. Substrate docking into the active site of the GrTPS2 apo protein structure predicted catalytic amino acids. Biochemical characterization of protein variants identified residues with impact on enzyme activity and catalytic specificity. Specifically, mutagenesis of Y457 provided mechanistic insight into the position-specific deprotonation of the intermediary carbocation to form the characteristic 7,13 double bond of 7,13-copalyl diphosphate.
二萜类天然产物在植物发育和生态适应中发挥着关键作用,许多二萜类化合物作为生物制品具有经济价值。II类二萜合酶家族催化二萜生物合成中的关键反应,将常见的香叶基香叶基二磷酸前体转化为不同的双环异戊二烯基二磷酸支架。这些前体的酶促重排和修饰产生了生物活性二萜类化合物的多样性。我们报道了粗壮胶草7,13-柯巴基二磷酸合酶GrTPS2在2.1 Å分辨率下的晶体结构。GrTPS2催化胶草酸生物合成中的关键反应,胶草酸是胶草属(胶草属,菊科)物种中的标志性代谢产物。胶草酸已被探索作为药物先导物和生物燃料生产的潜在来源。GrTPS2晶体结构采用II类二萜合酶保守的三结构域折叠,在γβ结构域中有一个功能性活性位点和一个残余的ɑ结构域。底物对接至GrTPS2无配体蛋白结构的活性位点预测了催化氨基酸。蛋白质变体的生化特性鉴定了对酶活性和催化特异性有影响的残基。具体而言,Y457的诱变提供了关于中间体碳正离子位置特异性去质子化以形成7,13-柯巴基二磷酸特征性7,13双键的机制见解。