Liebert Andrzej, Schreiter Hannes, Kapsner Lorenz A, Eberle Jessica, Ehring Chris M, Hadler Dominique, Brock Luise, Erber Ramona, Emons Julius, Laun Frederik B, Uder Michael, Wenkel Evelyn, Ohlmeyer Sabine, Bickelhaupt Sebastian
Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
Lehrstuhl für Medizinische Informatik, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
Eur Radiol. 2025 May;35(5):2603-2616. doi: 10.1007/s00330-024-11142-3. Epub 2024 Oct 25.
To investigate how different combinations of T1-weighted (T1w), T2-weighted (T2w), and diffusion-weighted imaging (DWI) impact the performance of virtual contrast-enhanced (vCE) breast MRI.
The IRB-approved, retrospective study included 1064 multiparametric breast MRI scans (age: 52 ± 12 years) obtained from 2017 to 2020 (single site, two 3-T MRI). Eleven independent neural networks were trained to derive vCE images from varying input combinations of T1w, T2w, and multi-b-value DWI sequences (b-value = 50-1500 s/mm). Three readers evaluated the vCE images with regard to qualitative scores of diagnostic image quality, image sharpness, satisfaction with contrast/signal-to-noise ratio, and lesion/non-mass enhancement conspicuity. Quantitative metrics (SSIM, PSNR, NRMSE, and median symmetrical accuracy) were analyzed and statistically compared between the input combinations for the full breast volume and both enhancing and non-enhancing target findings.
The independent test set consisted of 187 cases. The quantitative metrics significantly improved in target findings when multi-b-value DWI sequences were included during vCE training (p < 0.05). Non-significant effects (p > 0.05) were observed for the quantitative metrics on the full breast volume when comparing input combinations including T1w. Using T1w and DWI acquisitions during vCE training is necessary to achieve high satisfaction with contrast/SNR and good conspicuity of the enhancing findings. The input combination of T1w, T2w, and DWI sequences with three b-values showed the best qualitative performance.
vCE breast MRI performance is significantly influenced by input sequences. Quantitative metrics and visual quality of vCE images significantly benefit when multi b-value DWI is added to morphologic T1w-/T2w sequences as input for model training.
Question How do different MRI sequences impact the performance of virtual contrast-enhanced (vCE) breast MRI? Findings The input combination of T1-weighted, T2-weighted, and diffusion-weighted imaging sequences with three b-values showed the best qualitative performance. Clinical relevance While in the future neural networks providing virtual contrast-enhanced images might further improve accessibility to breast MRI, the significant influence of input data needs to be considered during translational research.
探讨T1加权(T1w)、T2加权(T2w)和扩散加权成像(DWI)的不同组合如何影响虚拟对比增强(vCE)乳腺MRI的性能。
这项经机构审查委员会批准的回顾性研究纳入了2017年至2020年期间(单中心,两台3-T MRI)获得的1064例多参数乳腺MRI扫描(年龄:52±12岁)。训练了11个独立的神经网络,以从T1w、T2w和多b值DWI序列(b值=50-1500 s/mm²)的不同输入组合中得出vCE图像。三名阅片者对vCE图像的诊断图像质量、图像清晰度、对对比度/信噪比的满意度以及病变/非肿块强化的清晰度进行定性评分。分析了全乳体积以及强化和非强化目标病灶的输入组合之间的定量指标(结构相似性指数、峰值信噪比、归一化均方根误差和中位数对称准确度),并进行了统计学比较。
独立测试集包括187例病例。当在vCE训练期间纳入多b值DWI序列时,目标病灶的定量指标有显著改善(p<0.05)。在比较包含T1w 的输入组合时,全乳体积的定量指标未观察到显著影响(p>0.05)。在vCE训练期间使用T1w和DWI采集,对于获得高对比度/信噪比满意度和强化病灶的良好清晰度是必要的。T1w、T2w和具有三个b值的DWI序列的输入组合显示出最佳的定性性能。
vCE乳腺MRI的性能受输入序列的显著影响。当将多b值DWI添加到形态学T1w/T2w序列作为模型训练的输入时,vCE图像的定量指标和视觉质量显著受益。
问题不同的MRI序列如何影响虚拟对比增强(vCE)乳腺MRI的性能?发现T1加权、T2加权和具有三个b值的扩散加权成像序列的输入组合显示出最佳的定性性能。临床意义虽然未来提供虚拟对比增强图像的神经网络可能会进一步提高乳腺MRI的可及性,但在转化研究中需要考虑输入数据的显著影响。