Suppr超能文献

利用伪彩色图像提高基于深度迁移学习的乳腺肿块分类计算机辅助诊断方案的性能。

Utilizing Pseudo Color Image to Improve the Performance of Deep Transfer Learning-Based Computer-Aided Diagnosis Schemes in Breast Mass Classification.

作者信息

Jones Meredith A, Zhang Ke, Faiz Rowzat, Islam Warid, Jo Javier, Zheng Bin, Qiu Yuchen

机构信息

Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA.

School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA.

出版信息

J Imaging Inform Med. 2025 Jun;38(3):1871-1880. doi: 10.1007/s10278-024-01237-0. Epub 2024 Oct 25.

Abstract

The purpose of this study is to investigate the impact of using morphological information in classifying suspicious breast lesions. The widespread use of deep transfer learning can significantly improve the performance of the mammogram based CADx schemes. However, digital mammograms are grayscale images, while deep learning models are typically optimized using the natural images containing three channels. Thus, it is needed to convert the grayscale mammograms into three channel images for the input of deep transfer models. This study aims to develop a novel pseudo color image generation method which utilizes the mass contour information to enhance the classification performance. Accordingly, a total of 830 breast cancer cases were retrospectively collected, which contains 310 benign and 520 malignant cases, respectively. For each case, a total of four regions of interest (ROI) are collected from the grayscale images captured for both the CC and MLO views of the two breasts. Meanwhile, a total of seven pseudo color image sets are generated as the input of the deep learning models, which are created through a combination of the original grayscale image, a histogram equalized image, a bilaterally filtered image, and a segmented mass. Accordingly, the output features from four identical pre-trained deep learning models are concatenated and then processed by a support vector machine-based classifier to generate the final benign/malignant labels. The performance of each image set was evaluated and compared. The results demonstrate that the pseudo color sets containing the manually segmented mass performed significantly better than all other pseudo color sets, which achieved an AUC (area under the ROC curve) up to 0.889 ± 0.012 and an overall accuracy up to 0.816 ± 0.020, respectively. At the same time, the performance improvement is also dependent on the accuracy of the mass segmentation. The results of this study support our hypothesis that adding accurately segmented mass contours can provide complementary information, thereby enhancing the performance of the deep transfer model in classifying suspicious breast lesions.

摘要

本研究的目的是调查在对可疑乳腺病变进行分类时使用形态学信息的影响。深度迁移学习的广泛应用可以显著提高基于乳腺X线摄影的计算机辅助诊断(CADx)方案的性能。然而,数字乳腺X线摄影是灰度图像,而深度学习模型通常使用包含三个通道的自然图像进行优化。因此,需要将灰度乳腺X线摄影转换为三通道图像,作为深度迁移模型的输入。本研究旨在开发一种新颖的伪彩色图像生成方法,该方法利用肿块轮廓信息来提高分类性能。相应地,回顾性收集了总共830例乳腺癌病例,其中分别包含310例良性病例和520例恶性病例。对于每个病例,从双侧乳房的CC位和MLO位拍摄的灰度图像中总共收集四个感兴趣区域(ROI)。同时,总共生成七个伪彩色图像集作为深度学习模型的输入,这些图像集是通过原始灰度图像、直方图均衡化图像、双边滤波图像和分割后的肿块组合创建的。相应地,将四个相同的预训练深度学习模型的输出特征进行拼接,然后由基于支持向量机的分类器进行处理,以生成最终的良性/恶性标签。对每个图像集的性能进行了评估和比较。结果表明,包含手动分割肿块的伪彩色集的性能明显优于所有其他伪彩色集,其分别达到了高达0.889±0.012的AUC(ROC曲线下面积)和高达0.816±0.020的总体准确率。同时,性能的提高还取决于肿块分割的准确性。本研究结果支持了我们的假设,即添加准确分割的肿块轮廓可以提供补充信息,从而提高深度迁移模型在对可疑乳腺病变进行分类时的性能。

相似文献

8
Deep feature-based automatic classification of mammograms.基于深度特征的乳腺X线照片自动分类
Med Biol Eng Comput. 2020 Jun;58(6):1199-1211. doi: 10.1007/s11517-020-02150-8. Epub 2020 Mar 21.

本文引用的文献

1
Segment anything in medical images.在医学图像中分割任何内容。
Nat Commun. 2024 Jan 22;15(1):654. doi: 10.1038/s41467-024-44824-z.
2
Cancer statistics, 2024.2024年癌症统计数据。
CA Cancer J Clin. 2024 Jan-Feb;74(1):12-49. doi: 10.3322/caac.21820. Epub 2024 Jan 17.
4
Transformers in medical imaging: A survey.医学成像中的变压器:综述。
Med Image Anal. 2023 Aug;88:102802. doi: 10.1016/j.media.2023.102802. Epub 2023 Apr 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验