Suppr超能文献

基于模型选择实现静息态 EEG 特征与自闭症之间可重现的关联。

Model selection to achieve reproducible associations between resting state EEG features and autism.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.

Duke Center for Autism and Brain Development, Duke University, Durham, NC, 27708, USA.

出版信息

Sci Rep. 2024 Oct 25;14(1):25301. doi: 10.1038/s41598-024-76659-5.

Abstract

A concern in the field of autism electroencephalography (EEG) biomarker discovery is their lack of reproducibility. In the present study, we considered the problem of learning reproducible associations between multiple features of resting state (RS) neural activity and autism, using EEG data collected during a RS paradigm from 36 to 96 month-old children diagnosed with autism (N = 224) and neurotypical children (N = 69). Specifically, EEG spectral power and functional connectivity features were used as inputs to a regularized generalized linear model trained to predict diagnostic group (autism versus neurotypical). To evaluate our model, we proposed a procedure that quantified both the predictive generalization and reproducibility of learned associations produced by the model. When prioritizing both model predictive performance and reproducibility of associations, a highly reproducible profile of associations emerged. This profile revealed a distinct pattern of increased gamma power and connectivity in occipital and posterior midline regions associated with an autism diagnosis. Conversely, model selection based on predictive performance alone resulted in non-robust associations. Finally, we built a custom machine learning model that further empirically improved robustness of learned associations. Our results highlight the need for model selection criteria that maximize the scientific utility provided by reproducibility instead of predictive performance.

摘要

自闭症脑电(EEG)生物标志物发现领域的一个关注点是其可重复性差。在本研究中,我们考虑了使用静息状态(RS)神经活动的多个特征与自闭症之间的可重复关联的学习问题,使用从 36 至 96 个月大的自闭症(N=224)和神经典型儿童(N=69)诊断中 RS 范式期间收集的 EEG 数据。具体来说,将 EEG 频谱功率和功能连接特征用作输入,输入到正则化广义线性模型中,以预测诊断组(自闭症与神经典型)。为了评估我们的模型,我们提出了一种程序,该程序量化了模型产生的预测泛化和关联可重复性。当优先考虑模型的预测性能和关联的可重复性时,就会出现高度可重复的关联模式。该图谱显示出与自闭症诊断相关的枕部和后中线区域伽马功率和连通性增加的明显模式。相反,仅基于预测性能的模型选择会导致关联不可靠。最后,我们构建了一个自定义机器学习模型,进一步从经验上提高了学习关联的稳健性。我们的结果强调需要选择能够最大程度地提高可重复性提供的科学实用性而不是预测性能的模型选择标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e5c/11511871/0dffc3568dd1/41598_2024_76659_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验