Suppr超能文献

miR-124 协调代谢调节剂在人类神经发生早期阶段的作用。

miR-124 coordinates metabolic regulators acting at early stages of human neurogenesis.

机构信息

Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.

Center for RNA Research, Institute for Basic Science, Seoul, Korea.

出版信息

Commun Biol. 2024 Oct 25;7(1):1393. doi: 10.1038/s42003-024-07089-2.

Abstract

Metabolic dysregulation of neurons is associated with diverse human brain disorders. Metabolic reprogramming occurs during neuronal differentiation, but it is not fully understood which molecules regulate metabolic changes at the early stages of neurogenesis. In this study, we report that miR-124 is a driver of metabolic change at the initiating stage of human neurogenesis. Proteome analysis has shown the oxidative phosphorylation pathway to be the most significantly altered among the differentially expressed proteins (DEPs) in the immature neurons after the knockdown of miR-124. In agreement with these proteomics results, miR-124-depleted neurons display mitochondrial dysfunctions, such as decreased mitochondrial membrane potential and cellular respiration. Moreover, morphological analyses of mitochondria in early differentiated neurons after miR-124 knockdown result in smaller and less mature shapes. Lastly, we show the potential of identified DEPs as novel metabolic regulators in early neuronal development by validating the effects of GSTK1 on cellular respiration. GSTK1, which is upregulated most significantly in miR-124 knockdown neurons, reduces the oxygen consumption rate of neural cells. Collectively, our data highlight the roles of miR-124 in coordinating metabolic maturation at the early stages of neurogenesis and provide insights into potential metabolic regulators associated with human brain disorders characterized by metabolic dysfunctions.

摘要

神经元的代谢失调与多种人类大脑疾病有关。代谢重编程发生在神经元分化过程中,但目前尚不完全清楚哪些分子调节神经发生早期的代谢变化。在这项研究中,我们报告说 miR-124 是人类神经发生起始阶段代谢变化的驱动因素。蛋白质组分析表明,在 miR-124 敲低后,不成熟神经元中差异表达蛋白 (DEP) 中氧化磷酸化途径的变化最为显著。与这些蛋白质组学结果一致,miR-124 耗竭的神经元表现出线粒体功能障碍,例如线粒体膜电位和细胞呼吸降低。此外,miR-124 敲低后早期分化神经元中线粒体的形态分析导致线粒体形状更小且更不成熟。最后,我们通过验证 GSTK1 对细胞呼吸的影响,显示了鉴定出的 DEP 作为早期神经元发育中新型代谢调节剂的潜力。GSTK1 在 miR-124 敲低神经元中上调最显著,降低神经细胞的耗氧率。总之,我们的数据强调了 miR-124 在协调神经发生早期代谢成熟中的作用,并为与代谢功能障碍相关的人类大脑疾病的潜在代谢调节剂提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f6f/11511827/28b3dcba3199/42003_2024_7089_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验