Suppr超能文献

稳健分析带有少量群组和连续结局的阶乘式群组试验的固定效应模型:一项模拟研究。

The fixed-effects model for robust analysis of stepped-wedge cluster trials with a small number of clusters and continuous outcomes: a simulation study.

机构信息

Centre for Quantitative Medicine, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.

Signature Research Programme in Health Services & Systems Research, Duke-NUS Medical School, Singapore, 169857, Singapore.

出版信息

Trials. 2024 Oct 25;25(1):718. doi: 10.1186/s13063-024-08572-1.

Abstract

BACKGROUND

Stepped-wedge cluster trials (SW-CTs) describe a cluster trial design where treatment rollout is staggered over the course of the trial. Clusters are commonly randomized to receive treatment beginning at different time points in this study design (commonly referred to as a Stepped-wedge cluster randomized trial; SW-CRT), but they can also be non-randomized. Trials with this design regularly have a low number of clusters and can be vulnerable to covariate imbalance. To address such covariate imbalance, previous work has examined covariate-constrained randomization and analysis adjustment for imbalanced covariates in mixed-effects models. These methods require the imbalanced covariate to always be known and measured. In contrast, the fixed-effects model automatically adjusts for all imbalanced time-invariant covariates, both measured and unmeasured, and has been implicated to have proper type I error control in SW-CTs with a small number of clusters and binary outcomes.

METHODS

We present a simulation study comparing the performance of the fixed-effects model against the mixed-effects model in randomized and non-randomized SW-CTs with small numbers of clusters and continuous outcomes. Additionally, we compare these models in scenarios with cluster-level covariate imbalances or confounding.

RESULTS

We found that the mixed-effects model can have low coverage probabilities and inflated type I error rates in SW-CTs with continuous outcomes, especially with a small number of clusters or when the ICC is low. Furthermore, mixed-effects models with a Satterthwaite or Kenward-Roger small sample correction can still result in inflated or overly conservative type I error rates, respectively. In contrast, the fixed-effects model consistently produced the target level of coverage probability and type I error rates without dramatically compromising power. Furthermore, the fixed-effects model was able to automatically account for all time-invariant cluster-level covariate imbalances and confounding to robustly yield unbiased estimates.

CONCLUSIONS

We recommend the fixed-effects model for robust analysis of SW-CTs with a small number of clusters and continuous outcomes, due to its proper type I error control and ability to automatically adjust for all potential imbalanced time-invariant cluster-level covariates and confounders.

摘要

背景

阶梯式群组临床试验(SW-CTs)描述了一种群组临床试验设计,其中治疗的推出在试验过程中逐步进行。在这种研究设计中,群组通常随机分配接受治疗,开始时间点不同(通常称为阶梯式群组随机试验;SW-CRT),但也可以是非随机的。具有这种设计的试验通常具有少量的群组,并且容易受到协变量不平衡的影响。为了解决这种协变量不平衡问题,先前的工作已经研究了混合效应模型中不平衡协变量的协变量约束随机化和分析调整。这些方法要求不平衡的协变量始终是已知和测量的。相比之下,固定效应模型自动调整所有不平衡的时间不变协变量,包括测量和未测量的协变量,并且已经被暗示在具有少量群组和二分类结局的 SW-CT 中具有适当的 I 型错误控制。

方法

我们进行了一项模拟研究,比较了固定效应模型与混合效应模型在具有少量群组和连续结局的随机化和非随机化 SW-CT 中的表现。此外,我们在存在群组水平协变量不平衡或混杂的情况下比较了这些模型。

结果

我们发现,在具有连续结局的 SW-CT 中,混合效应模型的覆盖率概率可能较低,I 型错误率可能较高,尤其是在群组数量较少或 ICC 较低的情况下。此外,具有 Satterthwaite 或 Kenward-Roger 小样本校正的混合效应模型仍然可能导致膨胀或过度保守的 I 型错误率。相比之下,固定效应模型始终产生目标水平的覆盖率概率和 I 型错误率,而不会显著降低功效。此外,固定效应模型能够自动考虑所有时间不变的群组水平协变量不平衡和混杂,以稳健地产生无偏估计。

结论

由于适当的 I 型错误控制和自动调整所有潜在的不平衡时间不变的群组水平协变量和混杂因素的能力,我们建议在具有少量群组和连续结局的 SW-CT 中使用固定效应模型进行稳健分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4dc/11515801/faee2fdbf8fe/13063_2024_8572_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验