Suppr超能文献

存在时变治疗效果时的阶梯式楔形集群随机试验分析。

Analysis of stepped wedge cluster randomized trials in the presence of a time-varying treatment effect.

机构信息

Department of Biostatistics, University of Washington, Seattle, Washington, USA.

出版信息

Stat Med. 2022 Sep 30;41(22):4311-4339. doi: 10.1002/sim.9511. Epub 2022 Jun 30.

Abstract

Stepped wedge cluster randomized controlled trials are typically analyzed using models that assume the full effect of the treatment is achieved instantaneously. We provide an analytical framework for scenarios in which the treatment effect varies as a function of exposure time (time since the start of treatment) and define the "effect curve" as the magnitude of the treatment effect on the linear predictor scale as a function of exposure time. The "time-averaged treatment effect" (TATE) and "long-term treatment effect" (LTE) are summaries of this curve. We analytically derive the expectation of the estimator resulting from a model that assumes an immediate treatment effect and show that it can be expressed as a weighted sum of the time-specific treatment effects corresponding to the observed exposure times. Surprisingly, although the weights sum to one, some of the weights can be negative. This implies that may be severely misleading and can even converge to a value of the opposite sign of the true TATE or LTE. We describe several models, some of which make assumptions about the shape of the effect curve, that can be used to simultaneously estimate the entire effect curve, the TATE, and the LTE. We evaluate these models in a simulation study to examine the operating characteristics of the resulting estimators and apply them to two real datasets.

摘要

阶梯式楔形群随机对照试验通常使用假设治疗的全部效果瞬时实现的模型进行分析。我们提供了一种分析框架,用于处理治疗效果随暴露时间(从治疗开始起的时间)变化的情况,并将“效应曲线”定义为治疗效果在线性预测器尺度上随暴露时间变化的幅度。“时间平均治疗效果”(TATE)和“长期治疗效果”(LTE)是该曲线的总结。我们从假设即时治疗效果的模型中分析推导出估计量 的期望,并表明它可以表示为与观察到的暴露时间相对应的特定时间治疗效果的加权和。令人惊讶的是,尽管权重之和为 1,但有些权重可能为负。这意味着 可能会产生严重的误导,甚至可能收敛到与真实 TATE 或 LTE 的相反符号的值。我们描述了几种模型,其中一些模型对效应曲线的形状做出了假设,可以用于同时估计整个效应曲线、TATE 和 LTE。我们在模拟研究中评估这些模型,以检查所得估计量的工作特性,并将其应用于两个真实数据集。

相似文献

1
Analysis of stepped wedge cluster randomized trials in the presence of a time-varying treatment effect.
Stat Med. 2022 Sep 30;41(22):4311-4339. doi: 10.1002/sim.9511. Epub 2022 Jun 30.
2
Finite-sample corrected generalized estimating equation of population average treatment effects in stepped wedge cluster randomized trials.
Stat Methods Med Res. 2017 Apr;26(2):583-597. doi: 10.1177/0962280214552092. Epub 2014 Sep 29.
4
Inference for the treatment effect in longitudinal cluster randomized trials when treatment effect heterogeneity is ignored.
Stat Methods Med Res. 2021 Nov;30(11):2503-2525. doi: 10.1177/09622802211041754. Epub 2021 Sep 27.
5
Admissible multiarm stepped-wedge cluster randomized trial designs.
Stat Med. 2019 Mar 30;38(7):1103-1119. doi: 10.1002/sim.8022. Epub 2018 Nov 6.
6
Assessing exposure-time treatment effect heterogeneity in stepped-wedge cluster randomized trials.
Biometrics. 2023 Sep;79(3):2551-2564. doi: 10.1111/biom.13803. Epub 2022 Dec 8.
8
Random effect misspecification in stepped wedge designs.
Clin Trials. 2022 Aug;19(4):380-383. doi: 10.1177/17407745221084702. Epub 2022 Mar 8.
10
The impact of varying cluster size in cross-sectional stepped-wedge cluster randomised trials.
BMC Med Res Methodol. 2019 Jun 14;19(1):123. doi: 10.1186/s12874-019-0760-6.

引用本文的文献

3
What Is a Stepped-Wedge Cluster Randomized Trial?
JAMA Intern Med. 2025 May 1;185(5):593-594. doi: 10.1001/jamainternmed.2024.8216.
4
Designing stepped wedge trials to evaluate physical activity interventions in schools: methodological considerations.
Int J Behav Nutr Phys Act. 2025 Feb 25;22(1):22. doi: 10.1186/s12966-025-01720-z.
7
How to achieve model-robust inference in stepped wedge trials with model-based methods?
Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae123.
10
Design and Analytic Methods to Evaluate Multilevel Interventions to Reduce Health Disparities: Rigorous Methods Are Available.
Prev Sci. 2024 Jul;25(Suppl 3):343-347. doi: 10.1007/s11121-024-01676-9. Epub 2024 Jul 1.

本文引用的文献

1
Random effect misspecification in stepped wedge designs.
Clin Trials. 2022 Aug;19(4):380-383. doi: 10.1177/17407745221084702. Epub 2022 Mar 8.
2
Inference for the treatment effect in longitudinal cluster randomized trials when treatment effect heterogeneity is ignored.
Stat Methods Med Res. 2021 Nov;30(11):2503-2525. doi: 10.1177/09622802211041754. Epub 2021 Sep 27.
3
Mixed-effects models for the design and analysis of stepped wedge cluster randomized trials: An overview.
Stat Methods Med Res. 2021 Feb;30(2):612-639. doi: 10.1177/0962280220932962. Epub 2020 Jul 6.
4
Novel methods for the analysis of stepped wedge cluster randomized trials.
Stat Med. 2020 Mar 30;39(7):815-844. doi: 10.1002/sim.8451. Epub 2019 Dec 26.
6
Robust inference for the stepped wedge design.
Biometrics. 2020 Mar;76(1):119-130. doi: 10.1111/biom.13106. Epub 2019 Nov 1.
7
Accounting for a decaying correlation structure in cluster randomized trials with continuous recruitment.
Stat Med. 2019 May 20;38(11):1918-1934. doi: 10.1002/sim.8089. Epub 2019 Jan 21.
9
Information content of cluster-period cells in stepped wedge trials.
Biometrics. 2019 Mar;75(1):144-152. doi: 10.1111/biom.12959. Epub 2018 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验