Yan Huan, Kuerbanjiang Maierheba, Muheyati Dina, Yang Zhong, Han Jia
Xinjiang Uygur Autonomous Region Analysis and Testing Research Institute, Xinjiang Key Laboratory of Featured Functional Food Nutrition and Safety Testing, Urumqi, 830011, China.
Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, 830017, China.
Nutr Metab (Lond). 2024 Oct 25;21(1):84. doi: 10.1186/s12986-024-00861-5.
Obesity is one of the public health issues that seriously threatens human health. This study aimed to investigate the effects of wheat bran oil (WBO) on body weight and fat/lipid accumulation in high-fat diet (HFD)-induced obese rats and further explore the possible mechanisms by microbiome and metabolome analyses.
Fifty Sprague-Dawley (SD) rats were fed either a normal chow diet (B group, n = 10) or HFD (n = 40) for 14 weeks to establish an obesity model. The HFD-induced obese rats were further divided into four groups and given WBO at 0 mL/kg (M group), 1.25 mL/kg (WBO-L group), 2.5 mL/kg (WBO-M group), and 5 mL/kg (WBO-H group) by oral gavage for 9 weeks. The body weight of rats was weighed weekly. The gut microbiota structure was analyzed using 16 S rDNA high-throughput sequencing. The liver metabolite profile was determined using UHPLC-QE-MS non-target metabolomics technology.
In this study, WBO treatment reduced body weight gain, fat and lipid accumulation, and ameliorated hepatic steatosis and inflammation. WBO treatment increased the relative abundance of Romboutsia and Allobaculum and decreased that of Candidatus_Saccharimonas, Alloprevotella, Rikenellaceae_RC9_gut_group, Alistipes, Parabacteroides, UCG-005, Helicobacter, Colidextribacter, and Parasutterella compared with the M group. A total of 22 liver metabolites were significantly altered by WBO treatment, which were mainly involved in taurine and hypotaurine metabolism, nicotinate and nicotunamide metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and ether lipid metabolism.
WBO alleviated body weight gain and fat/lipid accumulation in HFD-induced obese rats, which may be related to altered gut microbiota and liver metabolites.
肥胖是严重威胁人类健康的公共卫生问题之一。本研究旨在探讨麦麸油(WBO)对高脂饮食(HFD)诱导的肥胖大鼠体重及脂肪/脂质蓄积的影响,并通过微生物组和代谢组分析进一步探索其可能机制。
将50只Sprague-Dawley(SD)大鼠分为两组,一组给予正常饲料(B组,n = 10),另一组给予高脂饮食(n = 40),持续14周以建立肥胖模型。将高脂饮食诱导的肥胖大鼠进一步分为四组,分别通过灌胃给予0 mL/kg的WBO(M组)、1.25 mL/kg(WBO-L组)、2.5 mL/kg(WBO-M组)和5 mL/kg(WBO-H组),持续9周。每周称量大鼠体重。采用16S rDNA高通量测序分析肠道微生物群结构。使用超高效液相色谱-四极杆飞行时间质谱(UHPLC-QE-MS)非靶向代谢组学技术测定肝脏代谢物谱。
在本研究中,WBO处理减少了体重增加、脂肪和脂质蓄积,并改善了肝脏脂肪变性和炎症。与M组相比,WBO处理增加了罗姆布茨菌属(Romboutsia)和别氏菌属(Allobaculum)的相对丰度,降低了候选糖单胞菌属(Candidatus_Saccharimonas)、普雷沃氏菌属(Alloprevotella)、理研菌科RC9肠道菌群(Rikenellaceae_RC9_gut_group)、阿里斯杆菌属(Alistipes)、副拟杆菌属(Parabacteroides)、UCG-005、幽门螺杆菌属(Helicobacter)、结肠杆菌属(Colidextribacter)和萨特氏副杆菌属(Parasutterella)的相对丰度。WBO处理共显著改变了22种肝脏代谢物,主要涉及牛磺酸和亚牛磺酸代谢、烟酸和烟酰胺代谢、苯丙氨酸、酪氨酸和色氨酸生物合成、苯丙氨酸代谢以及醚脂代谢。
WBO减轻了高脂饮食诱导的肥胖大鼠的体重增加和脂肪/脂质蓄积,这可能与肠道微生物群和肝脏代谢物的改变有关。