Suppr超能文献

通过转录组分析鉴定神经胶质瘤患者的关键免疫和细胞周期模块及预后基因

Identification of Key Immune and Cell Cycle Modules and Prognostic Genes for Glioma Patients through Transcriptome Analysis.

作者信息

Guo Kaimin, Yang Jinna, Jiang Ruonan, Ren Xiaxia, Liu Peng, Wang Wenjia, Zhou Shuiping, Wang Xiaoguang, Ma Li, Hu Yunhui

机构信息

Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd., Tianjin 300410, China.

State Key Laboratory of Chinese Medicine Modernization, Tianjin 300193, China.

出版信息

Pharmaceuticals (Basel). 2024 Sep 28;17(10):1295. doi: 10.3390/ph17101295.

Abstract

BACKGROUND

Gliomas, the most prevalent type of primary brain tumor, stand out as one of the most aggressive and lethal types of human cancer.

METHODS & RESULTS: To uncover potential prognostic markers, we employed the weighted correlation network analysis (WGCNA) on the Chinese Glioma Genome Atlas (CGGA) 693 dataset to reveal four modules significantly associated with glioma clinical traits, primarily involved in immune function, cell cycle regulation, and ribosome biogenesis. Using the least absolute shrinkage and selection operator (LASSO) regression algorithm, we identified 11 key genes and developed a prognostic risk score model, which exhibits precise prognostic prediction in the CGGA 325 dataset. More importantly, we also validated the model in 12 glioma patients with overall survival (OS) ranging from 4 to 132 months using mRNA sequencing and immunohistochemical analysis. The analysis of immune infiltration revealed that patients with high-risk scores exhibit a heightened immune infiltration, particularly immune suppression cells, along with increased expression of immune checkpoints. Furthermore, we explored potentially effective drugs targeting 11 key genes for gliomas using the library of integrated network-based cellular signatures (LINCS) L1000 database, identifying that in vitro, both torin-1 and clofarabine exhibit promising anti-glioma activity and inhibitory effect on the cell cycle, a significant pathway enriched in the identified glioma modules.

CONCLUSIONS

In conclusion, our study provides valuable insights into molecular mechanisms and identifying potential therapeutic targets for gliomas.

摘要

背景

神经胶质瘤是最常见的原发性脑肿瘤类型,是人类癌症中最具侵袭性和致命性的类型之一。

方法与结果

为了发现潜在的预后标志物,我们对中国神经胶质瘤基因组图谱(CGGA)693数据集采用加权基因共表达网络分析(WGCNA),以揭示与神经胶质瘤临床特征显著相关的四个模块,主要涉及免疫功能、细胞周期调控和核糖体生物发生。使用最小绝对收缩和选择算子(LASSO)回归算法,我们鉴定出11个关键基因并建立了一个预后风险评分模型,该模型在CGGA 325数据集中表现出精确的预后预测能力。更重要的是,我们还使用mRNA测序和免疫组化分析在12例总生存期(OS)为4至132个月的神经胶质瘤患者中验证了该模型。免疫浸润分析显示,高风险评分的患者表现出更高的免疫浸润,特别是免疫抑制细胞,同时免疫检查点的表达增加。此外,我们使用基于网络的综合细胞特征库(LINCS)L1000数据库探索了针对神经胶质瘤的11个关键基因的潜在有效药物,发现体外实验中,托瑞米芬和氯法拉滨均表现出有前景的抗神经胶质瘤活性以及对细胞周期的抑制作用,细胞周期是在鉴定出的神经胶质瘤模块中显著富集的一条通路。

结论

总之,我们的研究为神经胶质瘤的分子机制和潜在治疗靶点的鉴定提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b88/11514598/09994bb35254/pharmaceuticals-17-01295-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验