Suppr超能文献

弯曲惯性微流控通道的并行化以提高同时进行微粒分离和洗涤的通量

Parallelization of Curved Inertial Microfluidic Channels to Increase the Throughput of Simultaneous Microparticle Separation and Washing.

作者信息

Norouzy Nima, Nikdoost Arsalan, Rezai Pouya

机构信息

Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St., Toronto, ON M3J 1P3, Canada.

出版信息

Micromachines (Basel). 2024 Sep 30;15(10):1228. doi: 10.3390/mi15101228.

Abstract

The rising global need for clean water highlights the importance of efficient sample preparation methods to separate and wash various contaminants such as microparticles. Microfluidic methods for these purposes have emerged but they mostly deliver either separation or washing, with very low throughputs. Here, we investigate parallelization of a curved-channel particle separation and washing device in order to increase its throughput for sample preparation. A curved microchannel applies inertial forces to focus larger 10 µm microparticles at the inner wall of the channel and separate them from smaller 5 µm microparticles at the outer wall. At the same time, Dean flow recirculation is used to exchange the carrier solution of the large microparticles to a clean buffer (washing). We increased the number of curved channels in a stepwise manner from two to four to eight channels in two different arraying designs, i.e., rectangular and polar arrays. We examined efficient separation of target 10 µm particles from 5 µm particles, while transferring the larger microparticles into a clean buffer. Dean flow recirculation studies demonstrated that the rectangular arrayed device performs better, providing solution exchange efficiencies of more than 96% on average as compared to 89% for the polar array device. Our 8-curve rectangular array device provided a particle separation efficiency of 98.93 ± 0.91%, while maintaining a sample purity of 92.83 ± 1.47% at a high working flow rate of 12.8 mL/min. Moreover, the target particles were transferred into a clean buffer with a solution exchange efficiency of 96.81 ± 0.54% in our 8-curve device. Compared to the literature, our in-plane parallelization design of curved microchannels resulted in a 13-fold increase in the working flow rate of the setup while maintaining a very high performance in particle separation and washing. Our microfluidic device offers the potential to enhance the throughput and the separation and washing efficiencies in applications for biological and environmental samples.

摘要

全球对清洁水的需求不断增加,凸显了高效样品制备方法对于分离和清洗各种污染物(如微粒)的重要性。为此目的的微流控方法已经出现,但它们大多只能实现分离或清洗,通量非常低。在这里,我们研究了一种弯曲通道颗粒分离和清洗装置的并行化,以提高其样品制备的通量。弯曲的微通道利用惯性力将较大的10微米微粒聚焦在通道内壁,并将它们与较小的5微米微粒在外壁分离。同时,利用Dean流再循环将大微粒的载液换成干净的缓冲液(清洗)。我们以逐步的方式将弯曲通道的数量从两个增加到四个再到八个,采用两种不同的排列设计,即矩形阵列和极坐标阵列。我们研究了从5微米颗粒中有效分离目标10微米颗粒,同时将较大的微粒转移到干净缓冲液中的情况。Dean流再循环研究表明,矩形阵列装置性能更好,平均溶液交换效率超过96%,而极坐标阵列装置为89%。我们的8曲线矩形阵列装置在12.8毫升/分钟的高工作流速下,颗粒分离效率为98.93±0.91%,同时保持样品纯度为92.83±1.47%。此外,在我们的8曲线装置中,目标颗粒以96.81±0.54%的溶液交换效率转移到干净的缓冲液中。与文献相比,我们弯曲微通道的面内并行化设计使装置的工作流速提高了13倍,同时在颗粒分离和清洗方面保持了非常高的性能。我们的微流控装置有潜力提高生物和环境样品应用中的通量以及分离和清洗效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fdd/11509581/db9dc5e648d6/micromachines-15-01228-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验