Suppr超能文献

使用复杂横截面微通道的高通量颗粒浓度检测

High-Throughput Particle Concentration Using Complex Cross-Section Microchannels.

作者信息

Mihandoust Asma, Razavi Bazaz Sajad, Maleki-Jirsaraei Nahid, Alizadeh Majid, A Taylor Robert, Ebrahimi Warkiani Majid

机构信息

Complex Systems Laboratory, School of Physics-Chemistry, Department of Physics, Alzahra University, Tehran 1993893973, Iran.

School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.

出版信息

Micromachines (Basel). 2020 Apr 22;11(4):440. doi: 10.3390/mi11040440.

Abstract

High throughput particle/cell concentration is crucial for a wide variety of biomedical, clinical, and environmental applications. In this work, we have proposed a passive spiral microfluidic concentrator with a complex cross-sectional shape, i.e., a combination of rectangle and trapezoid, for high separation efficiency and a confinement ratio less than 0.07. Particle focusing in our microfluidic system was observed in a single, tight focusing line, in which higher particle concentration is possible, as compared with simple rectangular or trapezoidal cross-sections with similar flow area. The sharper focusing stems from the confinement of Dean vortices in the trapezoidal region of the complex cross-section. To quantify this effect, we introduce a new parameter, complex focusing number or CFN, which is indicative of the enhancement of inertial focusing of particles in these channels. Three spiral microchannels with various widths of 400 µm, 500 µm, and 600 µm, with the corresponding CFNs of 4.3, 4.5, and 6, respectively, were used. The device with the total width of 600 µm was shown to have a separation efficiency of ~98%, and by recirculating, the output concentration of the sample was 500 times higher than the initial input. Finally, the investigation of results showed that the magnitude of CFN relies entirely on the microchannel geometry, and it is independent of the overall width of the channel cross-section. We envision that this concept of particle focusing through complex cross-sections will prove useful in paving the way towards more efficient inertial microfluidic devices.

摘要

高通量颗粒/细胞浓缩对于各种生物医学、临床和环境应用至关重要。在这项工作中,我们提出了一种具有复杂横截面形状(即矩形和梯形组合)的被动螺旋微流控浓缩器,以实现高分离效率和小于0.07的限制比。在我们的微流控系统中,颗粒聚焦在一条单一、紧密的聚焦线上,与具有相似流动面积的简单矩形或梯形横截面相比,在这条线上可以实现更高的颗粒浓度。更尖锐的聚焦源于复杂横截面梯形区域中迪恩涡的限制。为了量化这种效应,我们引入了一个新参数,即复杂聚焦数(CFN),它表示这些通道中颗粒惯性聚焦的增强。使用了三种宽度分别为400 µm、500 µm和600 µm的螺旋微通道,其相应的CFN分别为4.3、4.5和6。总宽度为600 µm的器件显示出约98%的分离效率,并且通过循环,样品的输出浓度比初始输入高500倍。最后,结果研究表明,CFN的大小完全取决于微通道几何形状,并且与通道横截面的总宽度无关。我们设想,这种通过复杂横截面实现颗粒聚焦的概念将被证明有助于为更高效的惯性微流控器件铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验