Yoo Jin-Uk, Choi Tae-Min, Pyo Sung-Gyu
School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
Micromachines (Basel). 2024 Sep 30;15(10):1231. doi: 10.3390/mi15101231.
The development of metal-insulator-semiconductor (MIS) capacitors requires device miniaturization and excellent electrical properties. Traditional SiO gate dielectrics have reached their physical limits. In this context, high-k materials such as TiO are emerging as promising alternatives to SiO. However, the deposition of dielectric layers in MIS capacitors typically requires high-vacuum equipment and challenging processing conditions. Therefore, in this study, we present a new method to effectively fabricate a poly(vinylidene fluoride) (PVDF)-based TiO dielectric layer via electrospinning. Nano-microscale layers were formed via electrospinning by applying a high voltage to a polymer solution, and electrical properties were analyzed as a function of the TiO crystalline phase and residual amount of PVDF at different annealing temperatures. Improved electrical properties were observed with increasing TiO anatase content, and the residual amount of PVDF decreased with increasing annealing temperature. The sample annealed at 600 °C showed a lower leakage current than those annealed at 300 and 450 °C, with a leakage current density of 7.5 × 10 A/cm when Vg = 0 V. Thus, electrospinning-based coating is a cost-effective method to fabricate dielectric thin films. Further studies will show that it is flexible and dielectric tunable, thus contributing to improve the performance of next-generation electronic devices.
金属-绝缘体-半导体(MIS)电容器的发展需要器件小型化和优异的电学性能。传统的SiO栅极电介质已达到其物理极限。在此背景下,诸如TiO等高k材料正成为SiO有前景的替代材料。然而,MIS电容器中介电层的沉积通常需要高真空设备和具有挑战性的加工条件。因此,在本研究中,我们提出了一种通过静电纺丝有效制备基于聚偏二氟乙烯(PVDF)的TiO介电层的新方法。通过对聚合物溶液施加高压,通过静电纺丝形成纳米-微米级层,并分析了不同退火温度下电学性能与TiO晶相和PVDF残留量的函数关系。随着TiO锐钛矿含量的增加,观察到电学性能得到改善,并且PVDF的残留量随着退火温度的升高而降低。在600℃退火的样品显示出比在300℃和450℃退火的样品更低的漏电流,当Vg = 0 V时,漏电流密度为7.5×10 A/cm。因此,基于静电纺丝的涂层是制备介电薄膜的一种经济有效的方法。进一步的研究将表明它具有灵活性和介电可调性,从而有助于提高下一代电子器件的性能。