Suppr超能文献

基于惯性测量单元的机器学习方法识别日常肩部任务中的冻结肩。

Inertial Measurement Unit-Based Frozen Shoulder Identification from Daily Shoulder Tasks Using Machine Learning Approaches.

机构信息

Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan.

Research Center for Information Technology Innovation, Academia Sinica, Taipei City 114, Taiwan.

出版信息

Sensors (Basel). 2024 Oct 16;24(20):6656. doi: 10.3390/s24206656.

Abstract

Frozen shoulder (FS) is a common shoulder condition accompanied by shoulder pain and a loss of shoulder range of motion (ROM). The typical clinical assessment tools such as questionnaires and ROM measurement are susceptible to subjectivity and individual bias. To provide an objective evaluation for clinical assessment, this study proposes an inertial measurement unit (IMU)-based identification system to automatically identify shoulder tasks whether performed by healthy subjects or FS patients. Two groups of features (time-domain statistical features and kinematic features), seven machine learning (ML) techniques, and two deep learning (DL) models are applied in the proposed identification system. For the experiments, 24 FS patients and 20 healthy subjects were recruited to perform five daily shoulder tasks with two IMUs attached to the arm and the wrist. The results demonstrate that the proposed system using deep learning presented the best identification performance using all features. The convolutional neural network achieved the best identification accuracy of 88.26%, and the multilayer perceptron obtained the best F1 score of 89.23%. Further analysis revealed that the identification performance based on wrist features had a higher accuracy compared to that based on arm features. The system's performance using time-domain statistical features has better discriminability in terms of identifying FS compared to using kinematic features. We demonstrate that the implementation of the IMU-based identification system using ML is feasible for FS assessment in clinical practice.

摘要

冻结肩(FS)是一种常见的肩部疾病,伴有肩部疼痛和肩部活动范围(ROM)丧失。典型的临床评估工具,如问卷和 ROM 测量,容易受到主观性和个体偏差的影响。为了对临床评估提供客观的评价,本研究提出了一种基于惯性测量单元(IMU)的识别系统,以自动识别健康受试者或 FS 患者执行的肩部任务。该识别系统应用了两组特征(时域统计特征和运动学特征)、七种机器学习(ML)技术和两种深度学习(DL)模型。在实验中,招募了 24 名 FS 患者和 20 名健康受试者,使用两个附着在手臂和手腕上的 IMU 执行五个日常肩部任务。结果表明,使用所有特征的深度学习提出的系统具有最佳的识别性能。卷积神经网络的识别准确率最高,为 88.26%,多层感知机的 F1 得分最高,为 89.23%。进一步的分析表明,基于腕部特征的识别性能与基于臂部特征的识别性能相比具有更高的准确性。与使用运动学特征相比,基于时域统计特征的系统在识别 FS 方面具有更好的可区分性。我们证明了使用 ML 实现基于 IMU 的识别系统在临床实践中对 FS 评估是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fdc/11511118/8be9a3e84ff1/sensors-24-06656-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验