École de technologie supérieure, Université du Québec, Montréal, QC H3C 1K3, Canada.
Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT), Montreal, QC H3A 1E3, Canada.
Sensors (Basel). 2024 Oct 17;24(20):6679. doi: 10.3390/s24206679.
In recent years, the use of smart in-ear devices (hearables) for health monitoring has gained popularity. Previous research on in-ear breath monitoring with hearables uses signal processing techniques based on peak detection. Such techniques are greatly affected by movement artifacts and other challenging real-world conditions. In this study, we use an existing database of various breathing types captured using an in-ear microphone to classify breathing path and phase. Having a small dataset, we use XGBoost, a simple and fast classifier, to address three different classification challenges. We achieve an accuracy of 86.8% for a binary path classifier, 74.1% for a binary phase classifier, and 67.2% for a four-class path and phase classifier. Our path classifier outperforms existing algorithms in recall and F1, highlighting the reliability of our approach. This work demonstrates the feasibility of the use of hearables in continuous breath monitoring tasks with machine learning.
近年来,智能入耳设备(hearables)在健康监测中的应用越来越受欢迎。之前使用 hearables 进行入耳式呼吸监测的研究采用了基于峰值检测的信号处理技术。这些技术受到运动伪影和其他具有挑战性的现实条件的极大影响。在这项研究中,我们使用现有的使用入耳式麦克风捕获的各种呼吸类型的数据库来对呼吸路径和阶段进行分类。由于数据集较小,我们使用 XGBoost 这一简单快速的分类器来解决三个不同的分类挑战。我们实现了二进制路径分类器的 86.8%准确率、二进制阶段分类器的 74.1%准确率和四分类路径和阶段分类器的 67.2%准确率。我们的路径分类器在召回率和 F1 方面优于现有算法,突出了我们方法的可靠性。这项工作证明了机器学习在 hearables 连续呼吸监测任务中的应用的可行性。