Division of Biostatistics and Health Data Science, University of Minnesota, 2221 University Ave. SE., Ste. 200, Minneapolis, MN, 55414, USA.
Statistical Research and Data Science Center, Pfizer Inc., New York, USA.
BMC Med Res Methodol. 2024 Oct 26;24(1):251. doi: 10.1186/s12874-024-02378-0.
Reference intervals, which define an interval in which a specific proportion of measurements from a healthy population are expected to fall, are commonly used in medical practice. Synthesizing information from multiple studies through meta-analysis can provide a more precise and representative reference interval than one derived from a single study. However, the current approaches for estimating the reference interval from a meta-analysis mainly rely on aggregate data and require parametric distributional assumptions that cannot always be checked.
With the availability of individual participant data (IPD), non-parametric methods can be used to estimate reference intervals without any distributional assumptions. Furthermore, patient-level covariates can be introduced to estimate personalized reference intervals that may be more applicable to specific patients. This paper introduces quantile regression as a method to estimate the reference interval from an IPD meta-analysis under the fixed effects model.
We compared several non-parametric bootstrap methods through simulation studies to account for within-study correlation. Under fixed effects model, we recommend keeping the studies fixed and only randomly sampling subjects with replacement within each study.
We proposed to use the quantile regression in the IPD meta-analysis to estimate the reference interval. Based on the simulation results, we identify an optimal bootstrap strategy for estimating the uncertainty of the estimated reference interval. An example of liver stiffness measurements, a clinically important diagnostic test without explicitly established reference range in children, is provided to demonstrate the use of quantile regression in estimating both overall and subject-specific reference intervals.
参考区间是指在健康人群中,预期有特定比例的测量值落在该区间内。参考区间在医学实践中被广泛应用。通过荟萃分析综合来自多个研究的数据,可以提供比单个研究更精确和更具代表性的参考区间。然而,目前从荟萃分析中估计参考区间的方法主要依赖于汇总数据,并且需要参数分布假设,这些假设并不总是能够得到验证。
随着个体参与者数据(IPD)的可用性,可以使用非参数方法来估计参考区间,而无需任何分布假设。此外,可以引入患者水平的协变量来估计个性化的参考区间,这些区间可能更适用于特定患者。本文介绍了一种使用固定效应模型的分位数回归方法,从 IPD 荟萃分析中估计参考区间。
我们通过模拟研究比较了几种非参数自举方法,以考虑研究内相关性。在固定效应模型下,我们建议保持研究固定,并仅在每个研究中随机替换抽样对象。
我们建议在 IPD 荟萃分析中使用分位数回归来估计参考区间。基于模拟结果,我们确定了一种用于估计估计参考区间不确定性的最优自举策略。一个没有明确建立参考范围的临床重要诊断测试——肝脏硬度测量的例子被提供,以演示如何使用分位数回归来估计总体和个体参考区间。