Suppr超能文献

利用脑网络和心理状态对学习速度进行分类:揭示学习表现、心理状态和脑功能之间的相互依存关系。

Classifying Learning Speed Using Brain Networks and Psychological States: Unraveling the Interdependence Between Learning Performance, Psychological States, and Brain Functions.

作者信息

Bizen Hiroki, Kimura Daisuke

机构信息

Department of Occupational Therapy, Faculty of Health Sciences, Kansai University of Health Sciences, Osaka, JPN.

Department of Occupational Therapy, Faculty of Medical Sciences, Nagoya Women's University, Nagoya, JPN.

出版信息

Cureus. 2024 Sep 24;16(9):e70133. doi: 10.7759/cureus.70133. eCollection 2024 Sep.

Abstract

Introduction The progression of performance learning (PL) may have complex relationships beyond mere concurrent occurrences and may influence each other. This study aimed to classify the speed of PL using a random forest based on brain network and stress state information and to identify the factors necessary for PL. In addition, this study also aimed to clarify the complex interdependent relationships between PL, psychological state, and brain function through these factors, using covariance structure analysis. Methods A total of 20 healthy individuals participated in a choice reaction time task, and brain function was measured using near-infrared spectroscopy (NIRS). Participants were divided into high-PL and low-PL groups based on the median difference in correct responses. Results Random forest analysis identified the left orbitofrontal area, right premotor cortex, right frontal pole, left frontal pole, left dorsolateral prefrontal cortex, and depression and anxiety as key factors. Covariance structure analysis revealed that depression and anxiety affected PL through the frontal pole and prefrontal cortex, suggesting a complex interplay between psychological state, brain function, and learning. Conclusions These findings suggest that psychological states influence brain networks, thereby affecting learning performance. Tailoring rehabilitation programs to address psychological states and providing targeted feedback may improve learning outcomes. The study provides insights into the theoretical and practical applications of understanding the brain's role in PL, as well as the importance of addressing psychological factors to optimize learning and rehabilitation strategies.

摘要

引言 绩效学习(PL)的进展可能具有超越单纯同时发生的复杂关系,并且可能相互影响。本研究旨在基于脑网络和应激状态信息,使用随机森林对PL的速度进行分类,并确定PL所需的因素。此外,本研究还旨在通过这些因素,利用协方差结构分析来阐明PL、心理状态和脑功能之间复杂的相互依存关系。方法 共有20名健康个体参与了选择反应时任务,并使用近红外光谱(NIRS)测量脑功能。根据正确反应的中位数差异,将参与者分为高PL组和低PL组。结果 随机森林分析确定左眶额区、右运动前皮质、右额极、左额极、左背外侧前额叶皮质以及抑郁和焦虑为关键因素。协方差结构分析表明,抑郁和焦虑通过额极和前额叶皮质影响PL,提示心理状态、脑功能和学习之间存在复杂的相互作用。结论 这些发现表明心理状态会影响脑网络,从而影响学习表现。针对心理状态制定康复计划并提供有针对性的反馈可能会改善学习效果。该研究为理解大脑在PL中的作用的理论和实际应用提供了见解,以及解决心理因素以优化学习和康复策略的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1e3/11506145/ac926451af51/cureus-0016-00000070133-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验