Vishnu Shreekara Bhat, Pandi Vivek, Madola Indrakheela, Gopallawa Bhathiya, Abraham Gija Anna, Gayathri Rajendiran, Yakandawala Deepthi, Muthusamy Annamalai
Manipal Centre for Natural Sciences Manipal Academy of Higher Education Manipal India.
Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management Wayamba University of Sri Lanka Kuliyapitiya Sri Lanka.
Ecol Evol. 2024 Oct 26;14(10):e70489. doi: 10.1002/ece3.70489. eCollection 2024 Oct.
Species distribution modeling (SDM) is an essential tool in ecology and conservation for predicting species distributions based on species presence/absence data and environmental variables. The present study aimed to understand the distribution pattern and habitat suitability of under current and future climate change scenarios (2050 and 2070) using and tools. The study also intended to identify key environmental predictors of distribution. Species occurrence data were collected from various sources, including herbarium (online and physical), field surveys, and online databases, yielding 105 unique locations in the Western Ghats (WG) of India and Sri Lanka. We used 19 bioclimatic variables and elevation data sourced from WorldClim for modeling. The and models showed excellent performance in predicting the distribution of , with area under the curve values of 0.958 (± 0.002) and 0.93, respectively. In modeling, Temperature Seasonality (bio4) was the most significant environmental parameter, followed by the Precipitation of the Coldest Quarter (bio19). In contrast, the Annual Mean Temperature (bio1), Temperature Seasonality (bio4), and Annual Precipitation (bio12) were among the key contributors in . Both the models predicted relatively lesser areas in the species' distribution range as highly suitable habitats (HSH) in India and Sri Lanka. We found divergent trends in predicting distributions using and , particularly for future projections. Nevertheless, both models predicted significant habitat loss under future climate change scenarios, especially under RCP85, with varying degrees of suitability across India and Sri Lanka. Overall, our findings on expected habitat loss under future climate change scenarios highlight the importance of conserving , which has already been declared critically endangered (CR) in Sri Lanka.
物种分布模型(SDM)是生态学和保护领域的一项重要工具,用于根据物种出现/缺失数据和环境变量预测物种分布。本研究旨在利用[具体工具名称未给出]和[具体工具名称未给出]工具,了解[物种名称未给出]在当前以及未来气候变化情景(2050年和2070年)下的分布模式和栖息地适宜性。该研究还旨在确定[物种名称未给出]分布的关键环境预测因子。物种出现数据从各种来源收集,包括植物标本馆(在线和实体)、实地调查和在线数据库,在印度西高止山脉(WG)和斯里兰卡产生了105个独特地点。我们使用了来自WorldClim的19个生物气候变量和海拔数据进行建模。[具体模型名称未给出]和[具体模型名称未给出]模型在预测[物种名称未给出]的分布方面表现出色,曲线下面积值分别为0.958(±0.002)和0.93。在[具体模型名称未给出]建模中,温度季节性(bio4)是最显著的环境参数,其次是最冷月降水量(bio19)。相比之下,年平均温度(bio1)、温度季节性(bio4)和年降水量(bio12)是[具体模型名称未给出]中的关键贡献因素。两个模型都预测,在印度和斯里兰卡,该物种分布范围内作为高度适宜栖息地(HSH)的区域相对较少。我们发现,使用[具体模型名称未给出]和[具体模型名称未给出]预测[物种名称未给出]分布存在不同趋势,特别是对于未来预测。然而,两个模型都预测在未来气候变化情景下会有显著的栖息地丧失,尤其是在RCP85情景下,印度和斯里兰卡各地的适宜程度各不相同。总体而言,我们关于未来气候变化情景下预期栖息地丧失的研究结果凸显了保护[物种名称未给出]的重要性,该物种在斯里兰卡已被宣布为极度濒危(CR)。