Held Richard G, Liang Jiahao, Esquivies Luis, Khan Yousuf A, Wang Chuchu, Azubel Maia, Brunger Axel T
Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States.
Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States.
bioRxiv. 2024 Oct 22:2024.10.19.619226. doi: 10.1101/2024.10.19.619226.
Most synapses in the brain transmit information by the presynaptic release of vesicular glutamate, driving postsynaptic depolarization through AMPA-type glutamate receptors (AMPARs). The nanometer-scale topography of synaptic AMPARs regulates response amplitude by controlling the number of receptors activated by synaptic vesicle fusion. The mechanisms controlling AMPAR topography and their interactions with postsynaptic scaffolding proteins are unclear, as is the spatial relationship between AMPARs and synaptic vesicles. Here, we used cryo-electron tomography to map the molecular topography of AMPARs and visualize their structure. Clustered AMPARs form structured complexes with postsynaptic scaffolding proteins resolved by sub-tomogram averaging. Sub-synaptic topography mapping reveals the presence of AMPAR nanoclusters with exclusion zones beneath synaptic vesicles. Our molecular-resolution maps visualize the predominant information transfer path in the nervous system.
大脑中的大多数突触通过突触前释放囊泡型谷氨酸来传递信息,通过AMPA型谷氨酸受体(AMPARs)驱动突触后去极化。突触AMPARs的纳米级拓扑结构通过控制突触小泡融合激活的受体数量来调节反应幅度。控制AMPAR拓扑结构的机制及其与突触后支架蛋白的相互作用尚不清楚,AMPARs与突触小泡之间的空间关系也是如此。在这里,我们使用冷冻电子断层扫描来绘制AMPARs的分子拓扑结构并可视化其结构。聚集的AMPARs与通过亚断层平均解析的突触后支架蛋白形成结构化复合物。亚突触拓扑图谱揭示了突触小泡下方存在具有排斥区的AMPAR纳米簇。我们的分子分辨率图谱可视化了神经系统中主要的信息传递路径。