Bryant John Michael, Stimphil Emmanuel, Andre Victoria, Shotbolt Max, Zhang Elric, Estrella Veronica, Husain Kazim, Weygand Joseph, Marchion Doug, Lopez Alex Sebastian, Abrahams Dominique, Chen Shawnus, Abdel-Mottaleb Mostafa, Conlan Skye, Oraiqat Ibrahim, Khatri Vaseem, Guevara Jose Alejandro, Pilon-Thomas Shari, Redler Gage, Latifi Kujtim, Raghunand Natarajan, Yamoah Kosj, Hoffe Sarah, Costello James, Frakes Jessica M, Liang Ping, Khizroev Sakhrat, Gatenby Robert A, Malafa Mokenge
bioRxiv. 2024 Oct 15:2024.10.13.618075. doi: 10.1101/2024.10.13.618075.
This study presents the first in vivo and in vitro evidence of an externally controlled, predictive, MRI-based nanotheranostic agent capable of cancer cell specific targeting and killing via irreversible electroporation (IRE) in solid tumors. The rectangular-prism-shaped magnetoelectric nanoparticle is a smart nanoparticle that produces a local electric field in response to an externally applied magnetic field. When externally activated, MENPs are preferentially attracted to the highly conductive cancer cell membranes, which occurs in cancer cells because of dysregulated ion flux across their membranes. In a pancreatic adenocarcinoma murine model, MENPs activated by external magnetic fields during magnetic resonance imaging (MRI) resulted in a mean three-fold tumor volume reduction (62.3% vs 188.7%; < .001) from a single treatment. In a longitudinal confirmatory study, 35% of mice treated with activated MENPs achieved a durable complete response for 14 weeks after one treatment. The degree of tumor volume reduction correlated with a decrease in MRI T * relaxation time ( = .351; = .039) which suggests that MENPs have a potential to serve as a predictive nanotheranostic agent at time of treatment. There were no discernable toxicities associated with MENPs at any timepoint or on histopathological analysis of major organs. MENPs are a noninvasive alternative modality for the treatment of cancer.
We investigated the theranostic capabilities of magnetoelectric nanoparticles (MENPs) combined with MRI via a murine model of pancreatic adenocarcinoma. MENPs leverage the magnetoelectric effect to convert an applied magnetic field into local electric fields, which can induce irreversible electroporation of tumor cell membranes when activated by MRI. Additionally, MENPs modulate MRI relaxivity, which can be used to predict the degree of tumor ablation. Through a pilot study (n=21) and a confirmatory study (n=27), we demonstrated that, ≥300 µg of MRI-activated MENPs significantly reduced tumor volumes, averaging a three-fold decrease as compared to controls. Furthermore, there was a direct correlation between the reduction in tumor T relaxation times and tumor volume reduction, highlighting the predictive prognostic value of MENPs. Six of 17 mice in the confirmatory study's experimental arms achieved a durable complete response, showcasing the potential for durable treatment outcomes. Importantly, the administration of MENPs was not associated with any evident toxicities. This study presents the first in vivo evidence of an externally controlled, MRI-based, theranostic agent that effectively targets and treats solid tumors via irreversible electroporation while sparing normal tissues, offering a new and promising approach to cancer therapy.
本研究首次提供了体内和体外证据,证明一种基于磁共振成像(MRI)的外部可控、具有预测性的纳米诊疗剂,能够通过不可逆电穿孔(IRE)特异性靶向并杀死实体瘤中的癌细胞。长方体形状的磁电纳米粒子是一种智能纳米粒子,能响应外部施加的磁场产生局部电场。当被外部激活时,磁电纳米粒子会优先被高导电性的癌细胞膜吸引,这是由于癌细胞跨膜离子通量失调所致。在胰腺腺癌小鼠模型中,在磁共振成像(MRI)期间通过外部磁场激活的磁电纳米粒子单次治疗后使肿瘤体积平均缩小了三倍(62.3%对188.7%;P<0.001)。在一项纵向验证性研究中,35%接受激活磁电纳米粒子治疗的小鼠在一次治疗后14周内实现了持久的完全缓解。肿瘤体积缩小程度与MRI T2*弛豫时间的降低相关(r = 0.351;P = 0.039),这表明磁电纳米粒子在治疗时有可能作为一种具有预测性的纳米诊疗剂。在任何时间点或主要器官的组织病理学分析中,均未发现磁电纳米粒子有明显毒性。磁电纳米粒子是一种用于癌症治疗的非侵入性替代方式。
我们通过胰腺腺癌小鼠模型研究了磁电纳米粒子(MENPs)与MRI相结合的诊疗能力。磁电纳米粒子利用磁电效应将施加的磁场转化为局部电场,当被MRI激活时可诱导肿瘤细胞膜发生不可逆电穿孔。此外,磁电纳米粒子可调节MRI弛豫率,可用于预测肿瘤消融程度。通过一项初步研究(n = 21)和一项验证性研究(n = 27),我们证明,≥300 µg的MRI激活磁电纳米粒子可显著缩小肿瘤体积,与对照组相比平均缩小三倍。此外,肿瘤T2弛豫时间的降低与肿瘤体积缩小直接相关,突出了磁电纳米粒子的预测预后价值。在验证性研究的实验组中,17只小鼠中有6只实现了持久的完全缓解,展示了持久治疗效果的潜力。重要的是,磁电纳米粒子的给药未产生任何明显毒性。本研究首次提供了体内证据,证明一种基于MRI的外部可控诊疗剂可通过不可逆电穿孔有效靶向并治疗实体瘤,同时 sparing正常组织,为癌症治疗提供了一种新的、有前景的方法。 (注:原文中“sparing normal tissues”这里的“sparing”拼写有误,可能是“sparing”,推测意思为“ sparing正常组织”,即“使正常组织免受影响”,译文按此理解翻译)