Suppr超能文献

利用生物电子学攻克侵袭性脑肿瘤中的抗癌药物耐药性和内体逃逸问题。

Tackling Anticancer Drug Resistance and Endosomal Escape in Aggressive Brain Tumors Using Bioelectronics.

作者信息

Jain Akhil, Wade Philippa, Stolnik Snow, Hume Alistair N, Kerr Ian D, Coyle Beth, Rawson Frankie

机构信息

Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.

Bioelectronics Laboratory, Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K.

出版信息

ACS Omega. 2024 Oct 8;9(42):42923-42931. doi: 10.1021/acsomega.4c05794. eCollection 2024 Oct 22.

Abstract

Resistance mechanisms in brain tumors, such as medulloblastoma and glioblastoma, frequently involve the entrapment of chemotherapeutic agents within endosomes and the extracellular expulsion of drugs. These barriers to effective treatment are exacerbated in nanotechnology-based drug delivery systems, where therapeutic nanoparticles often remain confined within endosomes, thus diminishing their therapeutic efficacy. Addressing this challenge necessitates the development of novel strategies to enhance the efficiency of cancer therapies. This study tests the hypothesis that external electrical stimuli can modulate intracellular trafficking of chemotherapeutic drugs in common malignant brain tumors in children (medulloblastoma) and adults (glioblastoma) by using gold nanoparticles (GNPs). In our experiments, alternating current (AC) stimulation ranging from 1 kHz to 5 MHz and at a strength of 1 V/cm significantly reduced cell viability in drug-resistant medulloblastoma and enhanced delivery of GNPs in glioblastoma. Low-frequency AC resulted in a 50% increase in apoptosis compared to controls and an 8-fold increase in cell death in cisplatin-resistant medulloblastoma cells, accompanied by a substantial reduction in EC from 2.5 to 0.3 μM. Similarly, vincristine-resistant cells demonstrated a 4-fold enhancement in drug sensitivity. Furthermore, high-frequency AC facilitated a significant increase from 20 to 75% in the endosomal escape of GNPs in glioblastoma cells. These findings underscore the potential of AC to selectively disrupt cancer cell resistance mechanisms and bolster the efficacy of nanoparticle-based therapies. The results indicate the effectiveness of AC stimulation in circumventing the limitations inherent in current nanotechnology-based drug delivery systems but also illustrates its transformative potential for treating aggressive, drug-resistant brain tumors.

摘要

脑肿瘤(如髓母细胞瘤和胶质母细胞瘤)中的耐药机制通常涉及化疗药物被困在内体中以及药物的细胞外排出。在基于纳米技术的药物递送系统中,这些有效治疗的障碍会加剧,因为治疗性纳米颗粒常常被困在内体中,从而降低其治疗效果。应对这一挑战需要开发新策略来提高癌症治疗的效率。本研究通过使用金纳米颗粒(GNP)来检验以下假设:外部电刺激可以调节儿童常见恶性脑肿瘤(髓母细胞瘤)和成人(胶质母细胞瘤)中化疗药物的细胞内转运。在我们的实验中,频率范围为1 kHz至5 MHz、强度为1 V/cm的交流电(AC)刺激显著降低了耐药髓母细胞瘤中的细胞活力,并增强了胶质母细胞瘤中GNP的递送。与对照组相比,低频交流电导致顺铂耐药髓母细胞瘤细胞的凋亡增加50%,细胞死亡增加8倍,同时细胞外浓度从2.5 μM大幅降至0.3 μM。同样,长春新碱耐药细胞的药物敏感性提高了4倍。此外,高频交流电促进了胶质母细胞瘤细胞中GNP的内体逃逸从20%显著增加到75%。这些发现强调了交流电选择性破坏癌细胞耐药机制和增强基于纳米颗粒疗法疗效的潜力。结果表明交流电刺激在克服当前基于纳米技术的药物递送系统固有局限性方面的有效性,同时也说明了其在治疗侵袭性、耐药性脑肿瘤方面的变革潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/213e/11500143/6eb44231fd1b/ao4c05794_0005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验