Roh Junghyun, Ryu Dongmin, Lee Jimin
Graduate School of Artificial Intelligence, Ulsan National Institute of Science and Technology, 50, Unist-gil, Ulsan, 44919 Republic of Korea.
Program in Biomedical Radiation Sciences, Seoul National University, 71, Ihwajang-gil, Seoul, 03087 Republic of Korea.
Biomed Eng Lett. 2024 Sep 26;14(6):1259-1278. doi: 10.1007/s13534-024-00430-y. eCollection 2024 Nov.
MR-only radiotherapy planning is beneficial from the perspective of both time and safety since it uses synthetic CT for radiotherapy dose calculation instead of real CT scans. To elevate the accuracy of treatment planning and apply the results in practice, various methods have been adopted, among which deep learning models for image-to-image translation have shown good performance by retaining domain-invariant structures while changing domain-specific details. In this paper, we present an overview of diverse deep learning approaches to MR-to-CT synthesis, divided into four classes: convolutional neural networks, generative adversarial networks, transformer models, and diffusion models. By comparing each model and analyzing the general approaches applied to this task, the potential of these models and ways to improve the current methods can be can be evaluated.
仅基于磁共振成像(MR)的放射治疗计划在时间和安全性方面都有益处,因为它使用合成CT进行放射治疗剂量计算,而非真实的CT扫描。为了提高治疗计划的准确性并将结果应用于实践,人们采用了各种方法,其中用于图像到图像转换的深度学习模型通过保留域不变结构同时改变域特定细节,表现出了良好的性能。在本文中,我们概述了多种用于从MR合成CT的深度学习方法,分为四类:卷积神经网络、生成对抗网络、Transformer模型和扩散模型。通过比较每个模型并分析应用于该任务的一般方法,可以评估这些模型的潜力以及改进当前方法的途径。