Suppr超能文献

基于半导体的电子鼻技术对即时护理呼吸样本进行分析,可区分未感染的受试者与新冠病毒肺炎患者:一项多分析人员实验。

Point-of-care breath sample analysis by semiconductor-based E-Nose technology discriminates non-infected subjects from SARS-CoV-2 pneumonia patients: a multi-analyst experiment.

作者信息

Woehrle Tobias, Pfeiffer Florian, Mandl Maximilian M, Sobtzick Wolfgang, Heitzer Jörg, Krstova Alisa, Kamm Luzie, Feuerecker Matthias, Moser Dominique, Klein Matthias, Aulinger Benedikt, Dolch Michael, Boulesteix Anne-Laure, Lanz Daniel, Choukér Alexander

机构信息

Department of Anesthesiology LMU University Hospital Ludwig Maximilian University Munich Germany.

Institute for Medical Information Processing Biometry and Epidemiology Faculty of Medicine Ludwig Maximilian University Munich Germany.

出版信息

MedComm (2020). 2024 Oct 24;5(11):e726. doi: 10.1002/mco2.726. eCollection 2024 Nov.

Abstract

Metal oxide sensor-based electronic nose (E-Nose) technology provides an easy to use method for breath analysis by detection of volatile organic compound (VOC)-induced changes of electrical conductivity. Resulting signal patterns are then analyzed by machine learning (ML) algorithms. This study aimed to establish breath analysis by E-Nose technology as a diagnostic tool for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pneumonia within a multi-analyst experiment. Breath samples of 126 subjects with ( = 63) or without SARS-CoV-2 pneumonia ( = 63) were collected using the ReCIVA® Breath Sampler, enriched and stored on Tenax sorption tubes, and analyzed using an E-Nose unit with 10 sensors. ML approaches were applied by three independent data analyst teams and included a wide range of classifiers, hyperparameters, training modes, and subsets of training data. Within the multi-analyst experiment, all teams successfully classified individuals as infected or uninfected with an averaged area under the curve (AUC) larger than 90% and misclassification error lower than 19%, and identified the same sensor as most relevant to classification success. This new method using VOC enrichment and E-Nose analysis combined with ML can yield results similar to polymerase chain reaction (PCR) detection and superior to point-of-care (POC) antigen testing. Reducing the sensor set to the most relevant sensor may prove interesting for developing targeted POC testing.

摘要

基于金属氧化物传感器的电子鼻(E-Nose)技术通过检测挥发性有机化合物(VOC)引起的电导率变化,为呼吸分析提供了一种易于使用的方法。然后通过机器学习(ML)算法分析所得的信号模式。本研究旨在在多分析师实验中确立通过电子鼻技术进行呼吸分析作为2019冠状病毒病(SARS-CoV-2)肺炎诊断工具的地位。使用ReCIVA®呼吸采样器收集了126名患有(n = 63)或未患SARS-CoV-2肺炎(n = 63)的受试者的呼吸样本,进行富集并存储在Tenax吸附管上,然后使用配备10个传感器的电子鼻装置进行分析。三个独立的数据分析师团队应用了机器学习方法,包括广泛的分类器、超参数、训练模式和训练数据子集。在多分析师实验中,所有团队均成功将个体分类为感染或未感染,平均曲线下面积(AUC)大于90%,误分类误差低于19%,并确定了与分类成功最相关的同一传感器。这种使用VOC富集和电子鼻分析并结合机器学习的新方法可以产生与聚合酶链反应(PCR)检测相似的结果,且优于即时检测(POC)抗原检测。对于开发针对性的即时检测,将传感器组减少到最相关的传感器可能会很有意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d814/11502717/704296c29845/MCO2-5-e726-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验