Suppr超能文献

人工智能应用对最新代 4K 结肠镜检查的影响。

Effect of artificial intelligence implementation to the latest generation 4K colonoscopy.

机构信息

Jagiellonian University, Faculty of Health Sciences, Krakow, Poland.

出版信息

Pol Przegl Chir. 2024 Aug 2;96(5):24-30. doi: 10.5604/01.3001.0054.6995.

Abstract

<b>Indroduction:</b> Colonoscopy is an acclaimed screening test to detect colorectal cancer (CRC). The most important quality indicators for colonoscopy are adenoma detection rate (ADR), cecal intubation rate (CIR), withdrawal time (WT), and bowel preparation (Boston Bowel Preparation Scale; BBPS). In modern endoscopy practice, the human eye is enhanced by highdefinition white-light visualization and advanced imaging technology. The main limitation of this procedure is the detection rate of suspicious lesions. The next generation of endoscopes with 4K resolution and computer-aided detection (CADe) based on artificial intelligence (AI) may be the next step to improve the quality of tests performed.<b>Aim:</b> The aim was to assess the effect of CADe implementation in the environment of the latest generation of endoscopes and 4K visualization in retrospective analysis.<b>Methods:</b> The study included 2,000 patients over 18 years old who underwent colonoscopy for various indications. Olympus Endo-Aid CADe AI system was used, together with the latest X1 series endoscope set using LED lighting and 4K ultra high-resolution technology. Group I consisted of 1,000 consecutive tests performed using Endo-Aid CADe, and group II the first 1,000 consecutive tests without the CADe system. ADR, Advanced adenoma detection rate (AADR), polyp detection rate (PDR), and mean polyp per patient score (MPP) were assessed in each group<b>Results:</b> A total of 2,000 participants were included in the analysis, divided into two groups regarding CADe implementation. The overall PDR was similar in the analyzed groups (AI: 46.7% <i>vs.</i> non-AI: 44.9%, P = 0.419). Both ADR (29.7 <i>vs.</i> 28.9%, P = 0.694) and AADR (6.9 <i>vs.</i> 7.1%, P = 0.861) changed unremarkably. However, a significant elevation in MPP was noted. The MPP rose from 0.85 in the non-AI group to 1.26 in the AI group (P<0.001). The comparative analysis conducted separately for each segment of the bowel revealed that PDR remarkably increased in the left colon (29.3 <i>vs.</i> 18.0%, P<0.001), with no difference for other segments and other parameters. Investigating the MPP separately in each segment showed a significant difference for the right colon (0.33 <i>vs.</i> 0.23, P = 0.032) and the left colon (0.47 <i>vs.</i> 0.28, P<0.001). When adjusted to bowel preparation the PDR and MPP were constantly higher in the AI group (29.3 <i>vs.</i> 19.0%, P<0.001, and 0.48 <i>vs.</i> 0.30, P<0.001, respectively). In addition, the significant impact of AI implementation on MPP faded in the right colon (0.33 <i>vs.</i> 0.24, P = 0.051) when compared with the overall analysis.<b>Conclusions:</b> Although recently published evidence is optimistic regarding AI efficiency in improving the quality of colonoscopy, the provided results widen the overall perspective. Prospective randomized controlled trials (RCTs) including procedures performed with newest generation scopes should elucidate the role of AI in high-resolution colonoscopy.

摘要

<b>引言:</b> 结肠镜检查是一种广受认可的筛查测试,可以检测结直肠癌(CRC)。结肠镜检查最重要的质量指标是腺瘤检出率(ADR)、盲肠插管率(CIR)、退镜时间(WT)和肠道准备(波士顿肠道准备量表;BBPS)。在现代内镜实践中,人眼通过高清白光可视化和先进的成像技术得到增强。该程序的主要局限性是可疑病变的检出率。具有 4K 分辨率和基于人工智能(AI)的计算机辅助检测(CADe)的下一代内窥镜可能是提高所执行测试质量的下一步。<b>目的:</b> 目的是在回顾性分析中评估在最新代内窥镜和 4K 可视化环境中实施 CADe 的效果。<b>方法:</b> 该研究纳入了 2000 名年龄在 18 岁以上的因各种原因接受结肠镜检查的患者。使用奥林巴斯 Endo-Aid CADe AI 系统,以及使用 LED 照明和 4K 超高分辨率技术的最新 X1 系列内窥镜集。第 I 组包括 1000 例连续使用 Endo-Aid CADe 进行的检查,第 II 组包括前 1000 例没有 CADe 系统的连续检查。在每组中评估 ADR、高级腺瘤检出率(AADR)、息肉检出率(PDR)和每位患者平均息肉评分(MPP)。<b>结果:</b> 共纳入 2000 名参与者进行分析,根据 CADe 实施情况分为两组。分析组的总体 PDR 相似(AI:46.7%<i>与</i>非 AI:44.9%,P=0.419)。ADR(29.7%<i>与</i>28.9%,P=0.694)和 AADR(6.9%<i>与</i>7.1%,P=0.861)均无明显变化。然而,MPP 显著升高。非 AI 组的 MPP 从 0.85 上升至 AI 组的 1.26(P<0.001)。对肠道各段进行的比较分析显示,左结肠的 PDR 显著增加(29.3%<i>与</i>18.0%,P<0.001),而其他各段和其他参数没有差异。对每个肠道段的 MPP 进行单独分析显示,右结肠(0.33<i>与</i>0.23,P=0.032)和左结肠(0.47<i>与</i>0.28,P<0.001)有显著差异。当调整肠道准备时,AI 组的 PDR 和 MPP 始终更高(29.3%<i>与</i>19.0%,P<0.001,和 0.48<i>与</i>0.30,P<0.001)。此外,与整体分析相比,AI 实施对 MPP 的显著影响在右结肠(0.33<i>与</i>0.24,P=0.051)中减弱。<b>结论:</b> 尽管最近发表的证据对 AI 提高结肠镜检查质量的效率持乐观态度,但提供的结果拓宽了整体视角。应包括使用最新代内镜进行的程序的前瞻性随机对照试验(RCT)来阐明 AI 在高分辨率结肠镜检查中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验