Pawar Nisha, Peña-Figueroa Miriam, Verde-Sesto Ester, Maestro Armando, Alvarez-Fernandez Alberto
Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, San Sebastián, 20018, Spain.
Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain.
Small. 2024 Dec;20(52):e2406885. doi: 10.1002/smll.202406885. Epub 2024 Oct 28.
Curcumin, the active compound in turmeric, is renowned for its anti-inflammatory, antioxidant, and antimicrobial properties, making it beneficial for treating conditions like arthritis, neurodegenerative diseases, and various cancers. Despite its promising therapeutic potential, curcumin's poor bioavailability-due to its rapid metabolism and low solubility-limits its clinical efficacy. To address this, recent research has focused on enhancing curcumin delivery using nanoparticles, liposomes, and novel nanomaterials. Among these, laponite, a synthetic nanoclay, has shown promise in improving curcumin delivery due to its unique properties, including large surface area, dual charge, and stability in solution. This study explores the use of curcumin-laponite nanoparticles as carrier vehicles for controlled delivery to in vitro model membranes. Utilizing advanced techniques such as neutron reflectometry, atomic force microscopy, quartz crystal microbalance with dissipation, and infrared spectroscopy, the interaction between curcumin-laponite nanoparticles and solid-supported lipid bilayers is monitored, revealing enhanced stability and controlled release of curcumin across the membrane. These findings pave the way for the development of curcumin-based therapies targeting cardiovascular, neurological, and oncological diseases, leveraging the synergistic effects of curcumin's biological activity and laponite's delivery capabilities.
姜黄素是姜黄中的活性化合物,以其抗炎、抗氧化和抗菌特性而闻名,对治疗关节炎、神经退行性疾病和各种癌症等病症有益。尽管姜黄素具有有前景的治疗潜力,但其生物利用度差——由于其快速代谢和低溶解度——限制了其临床疗效。为了解决这个问题,最近的研究集中在使用纳米颗粒、脂质体和新型纳米材料来提高姜黄素的递送效率。其中,合成纳米粘土锂皂石因其独特的性质,包括大表面积、双电荷和在溶液中的稳定性,在改善姜黄素递送方面显示出前景。本研究探索了使用姜黄素-锂皂石纳米颗粒作为载体,用于向体外模型膜进行控释递送。利用中子反射法、原子力显微镜、带耗散的石英晶体微天平以及红外光谱等先进技术,监测姜黄素-锂皂石纳米颗粒与固体支持脂质双层之间的相互作用,揭示了姜黄素在膜上增强的稳定性和控释。这些发现为开发针对心血管、神经和肿瘤疾病的基于姜黄素的疗法铺平了道路,利用了姜黄素生物活性和锂皂石递送能力的协同效应。