Suppr超能文献

一种受果蝇启发的智能嗅觉仿生传感系统,用于复杂环境中的气体识别。

A Drosophila-inspired intelligent olfactory biomimetic sensing system for gas recognition in complex environments.

作者信息

Yue Xiawei, Wang Jiachuang, Yang Heng, Li Zening, Zhao Fangyu, Liu Wenyuan, Zhang Pingping, Chen Hong, Jiang Hanjun, Qin Nan, Tao Tiger H

机构信息

State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.

School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Microsyst Nanoeng. 2024 Oct 28;10(1):153. doi: 10.1038/s41378-024-00752-y.

Abstract

The olfactory sensory system of Drosophila has several advantages, including low power consumption, high rapidity and high accuracy. Here, we present a biomimetic intelligent olfactory sensing system based on the integration of an 18-channel microelectromechanical system (MEMS) sensor array (16 gas sensors, 1 humidity sensor and 1 temperature sensor), a complementary metal‒oxide‒semiconductor (CMOS) circuit and an olfactory lightweight machine-learning algorithm inspired by Drosophila. This system is an artificial version of the biological olfactory perception system with the capabilities of environmental sensing, multi-signal processing, and odor recognition. The olfactory data are processed and reconstructed by the combination of a shallow neural network and a residual neural network, with the aim to determine the noxious gas information in challenging environments such as high humidity scenarios and partially damaged sensor units. As a result, our electronic olfactory sensing system is capable of achieving comprehensive gas recognition by qualitatively identifying 7 types of gases with an accuracy of 98.5%, reducing the number of parameters and the difficulty of calculation, and quantitatively predicting each gas of 3-5 concentration gradients with an accuracy of 93.2%; thus, these results show superiority of our system in supporting alarm systems in emergency rescue scenarios.

摘要

果蝇的嗅觉传感系统具有多个优点,包括低功耗、高速度和高精度。在此,我们展示了一种基于18通道微机电系统(MEMS)传感器阵列(16个气体传感器、1个湿度传感器和1个温度传感器)、互补金属氧化物半导体(CMOS)电路以及受果蝇启发的嗅觉轻量级机器学习算法集成的仿生智能嗅觉传感系统。该系统是生物嗅觉感知系统的人工版本,具备环境感知、多信号处理和气味识别能力。嗅觉数据通过浅层神经网络和残差神经网络相结合的方式进行处理和重构,旨在确定在高湿度场景和部分传感器单元损坏等具有挑战性的环境中的有害气体信息。结果表明,我们的电子嗅觉传感系统能够通过定性识别7种气体,准确率达到98.5%,减少参数数量和计算难度,并以93.2%的准确率定量预测3 - 5个浓度梯度的每种气体,从而实现全面的气体识别;因此,这些结果显示了我们的系统在支持应急救援场景中的报警系统方面的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9743/11520895/59384f057ebf/41378_2024_752_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验