Departments of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
BMC Psychiatry. 2024 Oct 28;24(1):739. doi: 10.1186/s12888-024-06116-0.
The use of the deep learning (DL) approach has been suggested or applied to identify childhood autism spectrum disorder (ASD). The capacity to predict ASD, however, differs across investigations. Our study's objective was to conduct a meta-analysis to determine the DL for ASD in children's classification accuracy.
Eligibility criteria were designed according to the purpose of the meta-analysis; PubMed, EMBASE, Cochrane Library, and Web of Science Database were searched for articles published up to April 16, 2023, on the accuracy of DL methods for ASD classification. Using the Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) to assess the quality of the included studies. Sensitivity, specificity, areas under the curve (AUC), summary receiver operating characteristic (SROC), and corresponding 95% confidence intervals (CIs) were compiled by using the bivariate random-effects models.
A total of 11 predictive trials based on DL models were included, involving 9495 ASD patients from 6 different databases. According to bivariate random-effects models' results, the overall sensitivity, specificity, and AUC of the DL technique for ASD were, 0.95 (95% CI = 0.88-0.98), 0.93 (95% CI = 0.85-0.97), and 0.98 (95%CI: 0.97-0.99), respectively. Subgroup analysis results found that different datasets did not cause heterogeneity (meta-regression P = 0.55). The Kaggle dataset's sensitivity and specificity were 0.94 (95%CI: 0.82-1.00) and 0.91 (95%CI: 0.76-1.00), and with 0.97 (95%CI: 0.92-1.00) and 0.97 (95%CI: 0.92-1.00) for ABIDE dataset.
DL techniques has satisfactory sensitivity, specificity, and AUC in ASD classification. However, the major heterogeneity of the included studies limited the effectiveness of this meta-analysis. Further trials need to be performed to demonstrate the clinical practicability of DL diagnosis.
深度学习(DL)方法已被提议或应用于识别儿童自闭症谱系障碍(ASD)。然而,不同研究的预测能力存在差异。我们的研究目的是进行荟萃分析,以确定 DL 方法在儿童 ASD 分类中的准确性。
根据荟萃分析的目的设计了纳入标准;检索了截至 2023 年 4 月 16 日发表在 PubMed、EMBASE、Cochrane 图书馆和 Web of Science 数据库上的关于 DL 方法对 ASD 分类准确性的文章。使用修订后的诊断准确性研究工具(QUADAS-2)评估纳入研究的质量。使用双变量随机效应模型汇总敏感性、特异性、曲线下面积(AUC)、综合受试者工作特征(SROC)和相应的 95%置信区间(CI)。
共纳入 11 项基于 DL 模型的预测性试验,涉及来自 6 个不同数据库的 9495 名 ASD 患者。根据双变量随机效应模型的结果,DL 技术对 ASD 的总体敏感性、特异性和 AUC 分别为 0.95(95%CI=0.88-0.98)、0.93(95%CI=0.85-0.97)和 0.98(95%CI:0.97-0.99)。亚组分析结果发现,不同数据集未引起异质性(meta 回归 P=0.55)。Kaggle 数据集的敏感性和特异性分别为 0.94(95%CI:0.82-1.00)和 0.91(95%CI:0.76-1.00),ABIDE 数据集的敏感性和特异性分别为 0.97(95%CI:0.92-1.00)和 0.97(95%CI:0.92-1.00)。
DL 技术在 ASD 分类中具有令人满意的敏感性、特异性和 AUC。然而,纳入研究的主要异质性限制了本荟萃分析的有效性。需要进一步的试验来证明 DL 诊断的临床实用性。