Suppr超能文献

对在初级保健中已发现症状但未得到正式诊断的痴呆患者进行自动检测:一项使用电子初级保健记录的回顾性病例对照研究。

Automated detection of patients with dementia whose symptoms have been identified in primary care but have no formal diagnosis: a retrospective case-control study using electronic primary care records.

作者信息

Ford Elizabeth, Sheppard Joanne, Oliver Seb, Rooney Philip, Banerjee Sube, Cassell Jackie A

机构信息

Department of Primary Care and Public Health, Brighton and Sussex Medical School, Brighton, Brighton and Hove, UK

Department of Physics and Astronomy, University of Sussex School of Mathematical and Physical Sciences, Brighton, Brighton and Hove, UK.

出版信息

BMJ Open. 2021 Jan 22;11(1):e039248. doi: 10.1136/bmjopen-2020-039248.

Abstract

OBJECTIVES

UK statistics suggest only two-thirds of patients with dementia get a diagnosis recorded in primary care. General practitioners (GPs) report barriers to formally diagnosing dementia, so some patients may be known by GPs to have dementia but may be missing a diagnosis in their patient record. We aimed to produce a method to identify these 'known but unlabelled' patients with dementia using data from primary care patient records.

DESIGN

Retrospective case-control study using routinely collected primary care patient records from Clinical Practice Research Datalink.

SETTING

UK general practice.

PARTICIPANTS

English patients aged >65 years, with a coded diagnosis of dementia recorded in 2000-2012 (cases), matched 1:1 with patients with no diagnosis code for dementia (controls).

INTERVENTIONS

Eight coded and nine keyword concepts indicating symptoms, screening tests, referrals and care for dementia recorded in the 5 years before diagnosis. We trialled machine learning classifiers to discriminate between cases and controls (logistic regression, naïve Bayes, random forest).

PRIMARY AND SECONDARY OUTCOMES

The outcome variable was dementia diagnosis code; the accuracy of classifiers was assessed using area under the receiver operating characteristic curve (AUC); the order of features contributing to discrimination was examined.

RESULTS

93 426 patients were included; the median age was 83 years (64.8% women). Three classifiers achieved high discrimination and performed very similarly. AUCs were 0.87-0.90 with coded variables, rising to 0.90-0.94 with keywords added. Feature prioritisation was different for each classifier; commonly prioritised features were Alzheimer's prescription, dementia annual review, memory loss and dementia keywords.

CONCLUSIONS

It is possible to detect patients with dementia who are known to GPs but unlabelled with a diagnostic code, with a high degree of accuracy in electronic primary care record data. Using keywords from clinic notes and letters improves accuracy compared with coded data alone. This approach could improve identification of dementia cases for record-keeping, service planning and delivery of good quality care.

摘要

目标

英国的统计数据显示,只有三分之二的痴呆症患者在初级医疗保健中有诊断记录。全科医生(GP)报告了正式诊断痴呆症存在障碍,因此一些患者可能被全科医生知晓患有痴呆症,但在其病历中可能缺少诊断记录。我们旨在制定一种方法,利用初级医疗保健患者记录中的数据识别这些“已知但未标记”的痴呆症患者。

设计

采用回顾性病例对照研究,使用来自临床实践研究数据链的常规收集的初级医疗保健患者记录。

设置

英国全科医疗。

参与者

年龄大于65岁的英国患者,在2000 - 2012年有痴呆症编码诊断记录(病例组),与无痴呆症诊断编码的患者1:1匹配(对照组)。

干预措施

在诊断前5年记录的8个编码和9个关键词概念,表明痴呆症的症状、筛查测试、转诊和护理情况。我们试用机器学习分类器来区分病例组和对照组(逻辑回归、朴素贝叶斯、随机森林)。

主要和次要结果

结果变量是痴呆症诊断编码;使用受试者工作特征曲线下面积(AUC)评估分类器的准确性;检查有助于区分的特征顺序。

结果

纳入93426名患者;中位年龄为83岁(64.8%为女性)。三种分类器实现了高区分度,且表现非常相似。使用编码变量时AUC为0.87 - 0.90,添加关键词后升至0.90 - 0.94。每个分类器的特征优先级不同;常见的优先特征是阿尔茨海默病处方、痴呆症年度复查、记忆力减退和痴呆症关键词。

结论

在电子初级医疗保健记录数据中,能够高度准确地检测出全科医生已知但未用诊断编码标记的痴呆症患者。与仅使用编码数据相比,使用临床记录和信件中的关键词可提高准确性。这种方法可改善痴呆症病例的识别,以用于记录保存、服务规划和提供高质量护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b406/7831719/03a178c3009e/bmjopen-2020-039248f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验