Suppr超能文献

使用3D打印制造的机械和化学稳定的铝-不锈钢多孔整体催化剂进行硼氢化钠水解

Borohydride Hydrolysis Using a Mechanically and Chemically Stable Aluminium-Stainless Steel Porous Monolith Catalyst Made by 3D Printing.

作者信息

Pope Frances, Xhaferri Xhoi, Giesen Daan, Geels Norbert J, Pichler Jessica, Rothenberg Gadi

机构信息

Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.

Technology Centre FNWI, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.

出版信息

ChemSusChem. 2025 Feb 1;18(3):e202401264. doi: 10.1002/cssc.202401264. Epub 2024 Oct 29.

Abstract

The challenge of moving to a carbon-free energy economy is highlighted in the context of technology and materials restrictions. Many technologies needed for the so-called energy transition depend on critical metals such as platinum, lithium, iridium and cobalt. Here we focus on solid borohydride salts as hydrogen carriers, studying catalysts for hydrogen release. We combine metal 3D printing technology and a Raney-type leaching process to make structured macroscopic catalyst/reactor monoliths of cobalt, aluminium and stainless steel with well-defined micropores. Remarkably, the blank catalyst samples, which are made only from aluminium and stainless steel (Al-SS), show high activity and, importantly, high stability in borohydride hydrolysis, with no mass loss and no surface poisoning. The batch results are confirmed in a continuous setup running for 96 h. Catalyst performance is attributed to the stable porous structure, the mechanical stability of the stainless steel macrostructure, and the presence of accessible Al(OH)x sites. This research shows a clear contribution to sustainability based on multi-factor comparison: The Al-SS catalyst outperforms the state-of-the-art on mechanical and chemical durability, it is both PGM-free and CRM-free, and its preparation follows a simple, scalable and low-waste procedure.

摘要

在技术和材料限制的背景下,向无碳能源经济转型的挑战凸显出来。所谓能源转型所需的许多技术依赖于铂、锂、铱和钴等关键金属。在此,我们专注于将固体硼氢化物盐作为氢载体,研究氢释放催化剂。我们将金属3D打印技术与雷尼型浸出工艺相结合,制备出具有明确微孔的钴、铝和不锈钢结构化宏观催化剂/反应器整体。值得注意的是,仅由铝和不锈钢(Al-SS)制成的空白催化剂样品在硼氢化物水解中表现出高活性,且重要的是具有高稳定性,无质量损失且无表面中毒现象。在连续运行96小时的装置中证实了批次结果。催化剂性能归因于稳定的多孔结构、不锈钢宏观结构的机械稳定性以及可及的Al(OH)x位点的存在。这项研究基于多因素比较对可持续性做出了明确贡献:Al-SS催化剂在机械和化学耐久性方面优于现有技术,它不含铂族金属(PGM)和关键原材料(CRM),并且其制备遵循简单、可扩展且低浪费的程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b2e/11789995/e076d1c963d1/CSSC-18-e202401264-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验