Suppr超能文献

超声影像组学预测 HER2 零表达、低表达和阳性表达乳腺癌:一项双中心研究。

Ultrasound Radiomics for the Prediction of Breast Cancers with HER2-Zero, -Low, and -Positive Status: A Dual-Center Study.

机构信息

The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China.

Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China.

出版信息

Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241292668. doi: 10.1177/15330338241292668.

Abstract

PURPOSE

To assess whether gray-scale ultrasound (US) based radiomic features can help distinguish HER2 expressions (ie, HER2-overexpressing, HER2-low-expressing, and HER2-zero-expressing) in breast cancer.

MATERIALS AND METHODS

This retrospective study encompassed female breast cancer patients who underwent US examinations at two distinct centers from February 2021 to July 2023. Tumor segmentation and radiomic feature extraction were performed on grayscale US images. Decision Tree analysis was employed to simultaneously evaluate feature importance, and the Least Absolute Shrinkage and Selection Operator technique was utilized for feature selection to construct the radiomic signature. The Area Under the Curve (AUC) of the Receiver Operating Characteristic curve was employed to assess the performance of the radiomic features. Multivariate logistic regression was used to identify independent predictors for distinguishing HER2 expression in the dataset.

RESULTS

The training set comprised 292 patients from Center 1 (median, 51 years; interquartile range [IQR]: 45-61), while the external validation set included 131 patients from Center 2 (median, 51 years; IQR: 45-62). In the external validation dataset, the radiomic features achieved AUC of 0.76 for distinguishing between HER2-low and positive tumors versus HER2-zero tumors. The AUC for differentiating HER2-low (1+) from HER2-zero tumors was 0.74, and for distinguishing HER2-low (2+) from HER2-zero tumors, the AUC was 0.77. In the multivariate analysis assessing HER2-low and HER2-positive versus HER2-zero tumors, internal echoes (P = .029) and margins (P < .001) emerged as independent predictive factors.

CONCLUSION

The radiomic signature and tumor descriptors from gray-scale US may predict distinct HER2 expressions of breast cancers with therapeutic implications.

摘要

目的

评估基于灰阶超声(US)的放射组学特征是否有助于区分乳腺癌的 HER2 表达(即 HER2 过表达、HER2 低表达和 HER2 零表达)。

材料与方法

本回顾性研究纳入了 2021 年 2 月至 2023 年 7 月在两个不同中心接受 US 检查的女性乳腺癌患者。对灰阶 US 图像进行肿瘤分割和放射组学特征提取。采用决策树分析同时评估特征重要性,应用最小绝对收缩和选择算子技术进行特征选择,构建放射组学特征。采用受试者工作特征曲线下面积(AUC)评估放射组学特征的性能。采用多变量逻辑回归识别数据集区分 HER2 表达的独立预测因素。

结果

训练集包括中心 1 的 292 例患者(中位年龄 51 岁;四分位距 [IQR]:45-61),外部验证集包括中心 2 的 131 例患者(中位年龄 51 岁;IQR:45-62)。在外部验证数据集,放射组学特征在区分 HER2 低表达与阳性肿瘤与 HER2 零表达肿瘤方面的 AUC 为 0.76。区分 HER2 低表达(1+)与 HER2 零表达肿瘤的 AUC 为 0.74,区分 HER2 低表达(2+)与 HER2 零表达肿瘤的 AUC 为 0.77。在评估 HER2 低表达和 HER2 阳性与 HER2 零表达肿瘤的多变量分析中,内部回声(P=0.029)和边缘(P<0.001)是独立的预测因素。

结论

灰阶 US 的放射组学特征和肿瘤特征可能预测乳腺癌不同的 HER2 表达,具有治疗意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bff3/11526407/b9860ecf79b8/10.1177_15330338241292668-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验