Department of Engineering Science and Applied Mathematics, Northwestern University, Evanston, IL, United States of America.
NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, United States of America.
PLoS One. 2024 Oct 29;19(10):e0301159. doi: 10.1371/journal.pone.0301159. eCollection 2024.
Single-cell RNA sequencing has enabled the study of aging at a molecular scale. While substantial progress has been made in measuring age-related gene expression, the underlying patterns and mechanisms of aging transcriptomes remain poorly understood. To address this gap, we propose a physics-inspired, data-analysis approach to extract additional insights from single-cell RNA sequencing data. By considering the genome as a many-body interacting system, we leverage central idea of the Renormalization Group to construct an approach to hierarchically describe aging across a spectrum of scales for the gene expresion. This framework provides a quantitative language to study the multiscale patterns of aging transcriptomes. Overall, our study demonstrates the value of leveraging theoretical physics concepts like the Renormalization Group to gain new biological insights from complex high-dimensional single-cell data.
单细胞 RNA 测序使我们能够在分子水平上研究衰老。虽然在测量与年龄相关的基因表达方面已经取得了很大进展,但衰老转录组的潜在模式和机制仍知之甚少。为了解决这一差距,我们提出了一种受物理启发的数据分析方法,从单细胞 RNA 测序数据中提取更多的见解。通过将基因组视为一个多体相互作用的系统,我们利用重整化群的核心思想来构建一种方法,以便在基因表达的一系列尺度上分层描述衰老。该框架提供了一种定量语言来研究衰老转录组的多尺度模式。总的来说,我们的研究表明,利用重整化群等理论物理概念从复杂的高维单细胞数据中获得新的生物学见解是有价值的。