Suppr超能文献

MO 应用程序提供个性化和全面的戒烟支持的可接受性、参与度和有效性的初步评估:开发和可用性研究。

Initial Evaluation of Acceptability, Engagement, and Effectiveness of the MO App to Provide Tailored and Comprehensive Support for Smoking Cessation: Development and Usability Study.

机构信息

Department of Communication Studies, School of Communication and System Health Lab, Hong Kong Baptist University, Hong Kong, China (Hong Kong).

Fontana Tobacco Treatment Center, University of California San Francisco, San Francisco, CA, United States.

出版信息

JMIR Mhealth Uhealth. 2024 Oct 29;12:e55239. doi: 10.2196/55239.

Abstract

BACKGROUND

Despite the growing availability of smoking cessation apps, low engagement and cessation rates have remained a significant challenge. To address this issue, we used a user-centered design to iteratively develop a mobile app (MO) to provide comprehensive, tailored, and evidence-based content to support smokers in their quitting journey.

OBJECTIVE

This study examined the acceptability, use, and preliminary efficacy of the MO app for smoking cessation. Specifically, we sought to understand smokers' preferred features, engagement, and satisfaction with MO; identify concerns in using the app and ways to improve the app; and evaluate its smoking cessation outcomes.

METHODS

Through 3 cohorts, we recruited 10, 12, and 85 adult smokers who attempted to quit smoking to pilot-test the MO app between December 2019 and July 2022. Participants were instructed to complete a baseline survey, interact with the app for 6 weeks, and fill in a postsurvey at week 6. Participants in cohort 3 completed an additional postsurvey at week 12. Participants' app use was tracked and analyzed. The primary outcome measures were participants' 7-day point prevalence abstinence at 6 and 12 weeks.

RESULTS

Participants reported high levels of satisfaction with the MO app across all 3 cohorts, rating it between 4.40 and 4.76 on a scale of 5 for acceptability. Users engaged with app activities for an average of 89 to 159 times over 35 days. The most liked features of the app included "quit plan," "tracking," "reminders and notifications," "MOtalks," and "motivational quotes." The 7-day point prevalence abstinence rate of the modified intention to treat population in cohort 3 was 58% at 6 weeks and 52% at 12 weeks. Those who interacted more frequently with app features and engaged with more diverse activities were more likely to maintain abstinence at weeks 6 and 12. For each additional time logged into the app, the odds of staying abstinent at week 12 increased by 5% (odds ratio [OR] 1.05, 95% CI 1.01-1.08). Participants who earned >5000 points during app use also had higher odds of quitting at both 6 weeks (OR 3.12, 95% CI 1.25-7.75) and 12 weeks (OR 4.65, 95% CI 1.83-11.76), compared with those who earned <5000 points.

CONCLUSIONS

Our study demonstrated that MO is a feasible mobile phone app with high acceptability and usability and can effectively deliver smoking cessation support to individuals who want to quit. Implications for developing and evaluating mobile phone apps for smoking cessation are discussed.

摘要

背景

尽管戒烟应用程序的可用性不断增加,但低参与度和戒烟率仍然是一个重大挑战。为了解决这个问题,我们采用以用户为中心的设计方法,迭代开发了一款移动应用程序(MO),为吸烟者的戒烟之旅提供全面、量身定制和基于证据的内容。

目的

本研究考察了 MO 应用程序在戒烟方面的可接受性、使用情况和初步效果。具体而言,我们旨在了解吸烟者对 MO 的偏好功能、参与度和满意度;识别使用应用程序的关注问题和改进方法;并评估其戒烟效果。

方法

通过 3 个队列,我们招募了 10、12 和 85 名成年吸烟者,他们在 2019 年 12 月至 2022 年 7 月期间尝试使用 MO 应用程序来测试 pilot。参与者被指示完成基线调查,在 6 周内与应用程序交互,并在第 6 周填写一份后测调查。队列 3 的参与者在第 12 周完成了一份额外的后测调查。参与者的应用程序使用情况被跟踪和分析。主要结局指标是参与者在第 6 和 12 周的 7 天点患病率戒烟率。

结果

所有 3 个队列的参与者对 MO 应用程序的满意度都很高,在 5 分制中对可接受性的评分在 4.40 到 4.76 之间。用户在 35 天内平均使用应用程序活动 89 到 159 次。最受用户欢迎的应用程序功能包括“戒烟计划”、“跟踪”、“提醒和通知”、“MOtalks”和“励志名言”。队列 3 的修正意向治疗人群的 7 天点患病率戒烟率在第 6 周为 58%,第 12 周为 52%。那些更频繁地与应用程序功能互动并参与更多不同活动的人更有可能在第 6 周和第 12 周保持戒烟状态。每次多登录一次应用程序,第 12 周保持戒烟的几率就会增加 5%(优势比[OR]1.05,95%置信区间[CI]1.01-1.08)。在应用程序使用过程中获得超过 5000 分的参与者在第 6 周(OR 3.12,95%CI 1.25-7.75)和第 12 周(OR 4.65,95%CI 1.83-11.76)戒烟的几率也更高,与获得低于 5000 分的参与者相比。

结论

我们的研究表明,MO 是一款具有高可接受性和可用性的可行的手机应用程序,可以有效地为想要戒烟的个人提供戒烟支持。讨论了开发和评估用于戒烟的手机应用程序的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e0/11558213/089256a2a767/mhealth_v12i1e55239_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验