Suppr超能文献

基于时空特征提取和化学成分的改进型颗粒物(PM)预测:RCG注意力模型

Improved PM prediction with spatio-temporal feature extraction and chemical components: The RCG-attention model.

作者信息

Li Ao, Wang Yafei, Qi Qianqian, Li Yunfeng, Jia Haixia, Zhou Xin, Guo Haixin, Xie Shuyang, Liu Junfeng, Mu Yujing

机构信息

Beijing Institute of Petrochemical Technology, China.

Beijing Institute of Petrochemical Technology, China.

出版信息

Sci Total Environ. 2024 Dec 10;955:177183. doi: 10.1016/j.scitotenv.2024.177183. Epub 2024 Nov 1.

Abstract

Deep learning models are widely used for PM prediction. However, neglecting temporal and spatial characteristics leads to low prediction accuracy. In this work, a new deep learning model (RCG - Attention model) was developed, which combines the residual neural network (ResNet) and the convolution gated recurrent network (ConvGRU) and is applied to extract the spatio - temporal features for predicting PM concentration over the subsequent 24 h. The ResNet extracts the spatial distribution features of pollutants, and the ConvGRU extracts temporal features. The spatial and temporal features are fused by the multi - head attention mechanism to obtain multi - dimensional features. These features are finally fed into a series of fully connected layers to predict the future results. Incorporating these chemical components enhances the scientific validity of the dataset and strengthens the inherent logical connections among variables. The Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and R - squared (R) results indicate that the prediction performance of the RCG - Attention model surpasses that of other baseline models. The model demonstrates superior prediction performance across multiple monitoring stations, suggesting robust generalization capabilities and adaptability for various regions in one city. The SHAP results show that PM, NO, RH, NO, OC and NH are significant influencing features. The RCG - Attention model provides a comprehensive solution for PM concentration prediction by integrating spatial and temporal feature extraction with chemical components.

摘要

深度学习模型被广泛用于颗粒物(PM)预测。然而,忽略时空特征会导致预测准确率较低。在这项工作中,开发了一种新的深度学习模型(RCG - 注意力模型),它结合了残差神经网络(ResNet)和卷积门控循环网络(ConvGRU),并应用于提取时空特征以预测未来24小时的PM浓度。ResNet提取污染物的空间分布特征,ConvGRU提取时间特征。时空特征通过多头注意力机制进行融合以获得多维特征。这些特征最终被输入到一系列全连接层以预测未来结果。纳入这些化学成分增强了数据集的科学有效性,并加强了变量之间的内在逻辑联系。平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)和决定系数(R)结果表明,RCG - 注意力模型的预测性能优于其他基线模型。该模型在多个监测站展示了卓越的预测性能,表明其具有强大的泛化能力和对一个城市不同区域的适应性。SHAP结果表明,PM、NO、RH、NO、OC和NH是显著的影响特征。RCG - 注意力模型通过将时空特征提取与化学成分相结合,为PM浓度预测提供了一个全面的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验