Mohammad Saleem, Jeebaseelan S D Sundarsingh
Department of Electrical and Electronics Engineering, Sathyabama Institute of Science & Technology, Chennai, 600119, India.
Sci Rep. 2024 Oct 29;14(1):25930. doi: 10.1038/s41598-024-76698-y.
In this paper, a novel hybrid sine-cosine and spotted Hyena-based chimp optimization algorithm (hybrid SSC) is adopted for the precise tuning of proportional-integral (PI) controllers in a microgrid system. The microgrid integrates multiple renewable energy sources, including photovoltaic (PV) panels, wind turbines, a fuel cell, and a battery storage system, all connected to a common DC bus. This DC bus interfaces with the main grid through a voltage source converter (VSC). The microgrid comprises a total of eight PI controllers distributed across various components: the boost converter in the wind system, the fuel cell system, the battery energy storage device, and the VSC controller. The hybrid SSC optimization algorithm effectively combines the exploration capabilities of the sine-cosine algorithm (SCA) with the exploitation strengths of the spotted Hyena optimizer (SHO) and Chimp optimization algorithm (ChOA), aiming to achieve optimal tuning of the PI controllers. This hybrid approach ensures an enhanced dynamic response and overall system performance by minimizing the integral of the time-weighted squared error (ITSE) for each controller. The simulation results, directed in a MATLAB/SIMULINK environment, demonstrate the efficacy of the hybrid SSC algorithm in improving the stability, response time and efficacy of the microgrid. The proposed technique significantly outperforms traditional tuning techniques, ensuring robust operation and seamless addition of renewable energy sources with the main grid. This study contributes to the advancement of intelligent control strategies for modern microgrids, emphasizing the importance of hybrid optimization algorithms in achieving optimal performance in complex energy systems.
在本文中,一种新颖的基于正弦余弦和斑点鬣狗的混合黑猩猩优化算法(混合SSC)被用于微电网系统中比例积分(PI)控制器的精确调谐。该微电网集成了多种可再生能源,包括光伏(PV)板、风力涡轮机、燃料电池和电池储能系统,所有这些都连接到一个公共直流母线。该直流母线通过电压源变换器(VSC)与主电网接口。微电网总共包括八个PI控制器,分布在各个组件中:风力系统中的升压变换器、燃料电池系统、电池储能装置和VSC控制器。混合SSC优化算法有效地将正弦余弦算法(SCA)的探索能力与斑点鬣狗优化器(SHO)和黑猩猩优化算法(ChOA)的利用优势相结合,旨在实现PI控制器的最优调谐。这种混合方法通过最小化每个控制器的时间加权平方误差积分(ITSE)来确保增强的动态响应和整体系统性能。在MATLAB/SIMULINK环境中进行的仿真结果证明了混合SSC算法在提高微电网稳定性、响应时间和效率方面的有效性。所提出的技术明显优于传统调谐技术,确保了微电网与主电网的稳健运行以及可再生能源的无缝接入。本研究有助于推动现代微电网智能控制策略的发展,强调混合优化算法在复杂能源系统中实现最优性能的重要性。