Suppr超能文献

实时量子纠错超越平衡点。

Real-time quantum error correction beyond break-even.

机构信息

Department of Physics, Yale University, New Haven, CT, USA.

Department of Applied Physics, Yale University, New Haven, CT, USA.

出版信息

Nature. 2023 Apr;616(7955):50-55. doi: 10.1038/s41586-023-05782-6. Epub 2023 Mar 22.

Abstract

The ambition of harnessing the quantum for computation is at odds with the fundamental phenomenon of decoherence. The purpose of quantum error correction (QEC) is to counteract the natural tendency of a complex system to decohere. This cooperative process, which requires participation of multiple quantum and classical components, creates a special type of dissipation that removes the entropy caused by the errors faster than the rate at which these errors corrupt the stored quantum information. Previous experimental attempts to engineer such a process faced the generation of an excessive number of errors that overwhelmed the error-correcting capability of the process itself. Whether it is practically possible to utilize QEC for extending quantum coherence thus remains an open question. Here we answer it by demonstrating a fully stabilized and error-corrected logical qubit whose quantum coherence is substantially longer than that of all the imperfect quantum components involved in the QEC process, beating the best of them with a coherence gain of G = 2.27 ± 0.07. We achieve this performance by combining innovations in several domains including the fabrication of superconducting quantum circuits and model-free reinforcement learning.

摘要

利用量子进行计算的目标与退相干的基本现象相矛盾。量子纠错 (QEC) 的目的是抵消复杂系统退相干的自然趋势。这个需要多个量子和经典组件参与的协同过程,会产生一种特殊类型的耗散,它比错误破坏存储的量子信息的速度更快地消除由错误引起的熵。以前尝试设计这种过程的实验面临着产生过多错误的问题,这些错误超过了过程本身的纠错能力。因此,利用 QEC 来延长量子相干性是否具有实际可行性仍然是一个悬而未决的问题。在这里,我们通过演示一个完全稳定和纠错的逻辑量子位来回答这个问题,该量子位的量子相干性明显长于 QEC 过程中涉及的所有不完美量子组件,其相干增益为 G=2.27±0.07,超过了其中最好的组件。我们通过结合几个领域的创新来实现这一性能,包括超导量子电路的制造和无模型强化学习。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验