Suppr超能文献

使用单细胞 RNA 测序进行脑胶质母细胞瘤多形性潜在吸引子的计算机模拟探索方法。

A method for in silico exploration of potential glioblastoma multiforme attractors using single-cell RNA sequencing.

机构信息

Graduate Program in Computational and Systems Biology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-900, Brazil.

Department of Applied Mathematics, Institute of Mathematics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-909, Brazil.

出版信息

Sci Rep. 2024 Oct 29;14(1):26003. doi: 10.1038/s41598-024-74985-2.

Abstract

We presented a method to find potential cancer attractors using single-cell RNA sequencing (scRNA-seq) data. We tested our method in a Glioblastoma Multiforme (GBM) dataset, an aggressive brain tumor presenting high heterogeneity. Using the cancer attractor concept, we argued that the GBM's underlying dynamics could partially explain the observed heterogeneity, with the dataset covering a representative region around the attractor. Exploratory data analysis revealed promising GBM's cellular clusters within a 3-dimensional marker space. We approximated the clusters' centroid as stable states and each cluster covariance matrix as defining confidence regions. To investigate the presence of attractors inside the confidence regions, we constructed a GBM gene regulatory network, defined a model for the dynamics, and prepared a framework for parameter estimation. An exploration of hyperparameter space allowed us to sample time series intending to simulate myriad variations of the tumor microenvironment. We obtained different densities of stable states across gene expression space and parameters displaying multistability across different clusters. Although we used our methodological approach in studying GBM, we would like to highlight its generality to other types of cancer. Therefore, this report contributes to an advance in the simulation of cancer dynamics and opens avenues to investigate potential therapeutic targets.

摘要

我们提出了一种使用单细胞 RNA 测序 (scRNA-seq) 数据寻找潜在癌症吸引子的方法。我们在胶质母细胞瘤 (GBM) 数据集(一种表现出高度异质性的侵袭性脑肿瘤)中测试了我们的方法。使用癌症吸引子的概念,我们认为 GBM 的潜在动力学可以部分解释观察到的异质性,数据集涵盖了吸引子周围的代表性区域。探索性数据分析揭示了在三维标记空间内具有前景的 GBM 细胞簇。我们将簇的质心近似为稳定状态,将每个簇的协方差矩阵定义为置信区域。为了研究置信区域内是否存在吸引子,我们构建了一个 GBM 基因调控网络,定义了一个动力学模型,并准备了一个参数估计框架。对超参数空间的探索使我们能够生成时间序列,旨在模拟肿瘤微环境的多种变化。我们在基因表达空间中获得了不同密度的稳定状态,并且在不同的簇之间显示出多稳定性的参数。虽然我们在研究 GBM 时使用了我们的方法方法,但我们希望强调它对其他类型癌症的通用性。因此,本报告有助于推进癌症动力学的模拟,并为研究潜在的治疗靶点开辟途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b86e/11522675/deb0bd1242e1/41598_2024_74985_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验