Suppr超能文献

微生物组动力学的替代稳定状态、非线性行为和可预测性。

Alternative stable states, nonlinear behavior, and predictability of microbiome dynamics.

机构信息

Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2133, Japan.

Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.

出版信息

Microbiome. 2023 Mar 29;11(1):63. doi: 10.1186/s40168-023-01474-5.

Abstract

BACKGROUND

Microbiome dynamics are both crucial indicators and potential drivers of human health, agricultural output, and industrial bio-applications. However, predicting microbiome dynamics is notoriously difficult because communities often show abrupt structural changes, such as "dysbiosis" in human microbiomes.

METHODS

We integrated theoretical frameworks and empirical analyses with the aim of anticipating drastic shifts of microbial communities. We monitored 48 experimental microbiomes for 110 days and observed that various community-level events, including collapse and gradual compositional changes, occurred according to a defined set of environmental conditions. We analyzed the time-series data based on statistical physics and non-linear mechanics to describe the characteristics of the microbiome dynamics and to examine the predictability of major shifts in microbial community structure.

RESULTS

We confirmed that the abrupt community changes observed through the time-series could be described as shifts between "alternative stable states" or dynamics around complex attractors. Furthermore, collapses of microbiome structure were successfully anticipated by means of the diagnostic threshold defined with the "energy landscape" analysis of statistical physics or that of a stability index of nonlinear mechanics.

CONCLUSIONS

The results indicate that abrupt microbiome events in complex microbial communities can be forecasted by extending classic ecological concepts to the scale of species-rich microbial systems. Video Abstract.

摘要

背景

微生物组动态是人类健康、农业产出和工业生物应用的关键指标和潜在驱动因素。然而,预测微生物组动态极具挑战性,因为群落通常会发生剧烈的结构变化,如人类微生物组中的“失调”。

方法

我们整合了理论框架和实证分析,旨在预测微生物群落的剧烈转变。我们监测了 48 个实验微生物群落 110 天,观察到各种群落水平的事件,包括崩溃和逐渐的组成变化,根据一组定义的环境条件发生。我们基于统计物理和非线性力学分析时间序列数据,以描述微生物组动态的特征,并检验微生物群落结构重大转变的可预测性。

结果

我们证实,通过时间序列观察到的突然群落变化可以被描述为“替代稳定状态”之间的转变,或者是围绕复杂吸引子的动态。此外,通过统计物理的“能量景观”分析或非线性力学的稳定性指数定义的诊断阈值,可以成功预测微生物组结构的崩溃。

结论

研究结果表明,通过将经典生态概念扩展到物种丰富的微生物系统的规模,可以预测复杂微生物群落中的突然微生物事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2952/10052866/8a2d3db7337b/40168_2023_1474_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验