Scarborough Jessica A, Eschrich Steven A, Torres-Roca Javier, Dhawan Andrew, Scott Jacob G
Systems Biology and Bioinformatics Department, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
NPJ Precis Oncol. 2023 Apr 19;7(1):38. doi: 10.1038/s41698-023-00375-y.
Precision medicine offers remarkable potential for the treatment of cancer, but is largely focused on tumors that harbor actionable mutations. Gene expression signatures can expand the scope of precision medicine by predicting response to traditional (cytotoxic) chemotherapy agents without relying on changes in mutational status. We present a new signature extraction method, inspired by the principle of convergent phenotypes, which states that tumors with disparate genetic backgrounds may evolve similar phenotypes independently. This evolutionary-informed method can be utilized to produce consensus signatures predictive of response to over 200 chemotherapeutic drugs found in the Genomics of Drug Sensitivity in Cancer (GDSC) Database. Here, we demonstrate its use by extracting the Cisplatin Response Signature (CisSig). We show that this signature can predict cisplatin response within carcinoma-based cell lines from the GDSC database, and expression of the signatures aligns with clinical trends seen in independent datasets of tumor samples from The Cancer Genome Atlas (TCGA) and Total Cancer Care (TCC) database. Finally, we demonstrate preliminary validation of CisSig for use in muscle-invasive bladder cancer, predicting overall survival in a small cohort of patients who undergo cisplatin-containing chemotherapy. This methodology can be used to produce robust signatures that, with further clinical validation, may be used for the prediction of traditional chemotherapeutic response, dramatically increasing the reach of personalized medicine in cancer.
精准医学为癌症治疗提供了巨大潜力,但主要集中在具有可操作突变的肿瘤上。基因表达特征可以通过预测对传统(细胞毒性)化疗药物的反应来扩大精准医学的范围,而无需依赖突变状态的变化。我们提出了一种新的特征提取方法,其灵感来自趋同表型的原理,该原理指出具有不同遗传背景的肿瘤可能独立地进化出相似的表型。这种基于进化的方法可用于生成预测对癌症药物敏感性基因组学(GDSC)数据库中200多种化疗药物反应的共识特征。在这里,我们通过提取顺铂反应特征(CisSig)来展示其用途。我们表明,该特征可以预测GDSC数据库中基于癌细胞系的顺铂反应,并且该特征的表达与来自癌症基因组图谱(TCGA)和全癌护理(TCC)数据库的肿瘤样本独立数据集中观察到的临床趋势一致。最后,我们展示了CisSig在肌肉浸润性膀胱癌中的初步验证,预测了一小群接受含顺铂化疗的患者的总生存期。这种方法可用于生成强大的特征,经过进一步的临床验证,可用于预测传统化疗反应,从而极大地扩大个性化医学在癌症中的应用范围。