文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于器官 CT 影像组学特征的肝硬化静脉曲张内镜治疗后 1 年内再出血预测模型的建立与内部验证

Development and internal validation of prediction model for rebleeding within one year after endoscopic treatment of cirrhotic varices: consideration from organ-based CT radiomics signature.

机构信息

Department of Radiology, The Affiliated Hospital of Southwest Medical University, NO. 25, Taiping Road, Jiangyang District, Luzhou City, Sichuan, China.

Pharmaceutical Diagnostics, GE Healthcare, Beijing, China.

出版信息

BMC Med Imaging. 2024 Oct 29;24(1):292. doi: 10.1186/s12880-024-01461-8.


DOI:10.1186/s12880-024-01461-8
PMID:39472821
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11523671/
Abstract

BACKGROUND: Rebleeding after endoscopic treatment for esophagogastric varices (EGVs) in cirrhotic patients remains a significant clinical challenge, with high mortality rates and limited predictive tools. Current methods, relying on clinical indicators, often lack precision and fail to provide personalized risk assessments. This study aims to develop and validate a novel, non-invasive prediction model based on CT radiomics to predict rebleeding risk within one year of treatment, integrating radiomic features from key organs and clinical data. METHODS: 123 patients were enrolled and divided into rebleeding (n = 44) and non-bleeding group (n = 79) within 1 year after endoscopic treatment of EGVs. The liver, spleen, and the lower part of the esophagus were segmented and the extracted radiomics features were selected to construct liver/spleen/esophagus radiomics signatures based on logistic regression. Clinic-radiomics combined models and multi-organ combined radiomics models were constructed based on independent model scores using logistic regression. The model performance was evaluated by ROC analysis, calibration and decision curves. The continuous net reclassification improvement (NRI) and integrated discrimination improvement (IDI) indices were analyzed. RESULTS: The clinical-liver combined model had the highest AUC of 0.931 (95% CI: 0.887-0.974), which was followed by the liver-based model with AUC of 0.891 (95% CI: 0.835-0.74). The decision curves also showed that the clinical-liver combined model afforded a greater net benefit compared to other models within the threshold probability of 0.45 to 0.80. Significant improvements in discrimination (IDI, P < 0.05) and reclassification (NRI, P < 0.05) were obtained for clinical-liver combined model compared with the independent ones. CONCLUSION: The independent and combined liver-based CT radiomics models performed well in predicting rebleeding within 1 year after endoscopic treatment of EGVs.

摘要

背景:肝硬化患者内镜治疗食管胃静脉曲张(EGV)后的再出血仍然是一个重大的临床挑战,死亡率高,且预测工具有限。目前的方法依赖于临床指标,往往缺乏准确性,无法提供个性化的风险评估。本研究旨在开发和验证一种新的、基于 CT 放射组学的非侵入性预测模型,该模型基于关键器官的放射组学特征和临床数据,预测治疗后 1 年内的再出血风险。

方法:纳入 123 例患者,根据内镜治疗 EGV 后 1 年内是否再出血分为再出血组(n=44)和未出血组(n=79)。对肝脏、脾脏和食管下段进行分割,提取放射组学特征,基于逻辑回归构建肝脏/脾脏/食管放射组学特征。基于独立模型评分,利用逻辑回归构建临床-放射组学联合模型和多器官联合放射组学模型。通过 ROC 分析、校准和决策曲线评估模型性能。分析连续净重新分类改善(NRI)和综合区分改善(IDI)指数。

结果:临床-肝脏联合模型的 AUC 最高为 0.931(95%CI:0.887-0.974),其次是肝脏模型,AUC 为 0.891(95%CI:0.835-0.74)。决策曲线也表明,在 0.45 至 0.80 的阈值概率范围内,临床-肝脏联合模型的净获益大于其他模型。与独立模型相比,临床-肝脏联合模型在区分度(IDI,P<0.05)和重新分类(NRI,P<0.05)方面有显著改善。

结论:独立和联合的基于肝脏的 CT 放射组学模型在预测内镜治疗 EGV 后 1 年内再出血方面表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bc5/11523671/3c771eeacd59/12880_2024_1461_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bc5/11523671/087fbea7e0d6/12880_2024_1461_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bc5/11523671/3afd97b68038/12880_2024_1461_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bc5/11523671/3c771eeacd59/12880_2024_1461_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bc5/11523671/087fbea7e0d6/12880_2024_1461_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bc5/11523671/3afd97b68038/12880_2024_1461_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bc5/11523671/3c771eeacd59/12880_2024_1461_Fig3_HTML.jpg

相似文献

[1]
Development and internal validation of prediction model for rebleeding within one year after endoscopic treatment of cirrhotic varices: consideration from organ-based CT radiomics signature.

BMC Med Imaging. 2024-10-29

[2]
Computed tomography-based multi-organ radiomics nomogram model for predicting the risk of esophagogastric variceal bleeding in cirrhosis.

World J Gastroenterol. 2024-9-28

[3]
Clinical-radiomics nomogram for predicting esophagogastric variceal bleeding risk noninvasively in patients with cirrhosis.

World J Gastroenterol. 2023-2-14

[4]
Development of a non-invasive diagnostic model for high-risk esophageal varices based on radiomics of spleen CT.

Abdom Radiol (NY). 2024-12

[5]
Multiparametric radiomics nomogram may be used for predicting the severity of esophageal varices in cirrhotic patients.

Ann Transl Med. 2020-3

[6]
Predicting gastro-oesophageal variceal bleeding in hepatitis B-related cirrhosis by CT radiomics signature.

Clin Radiol. 2019-10-8

[7]
A novel machine learning-based radiomic model for diagnosing high bleeding risk esophageal varices in cirrhotic patients.

Hepatol Int. 2022-4

[8]
A Novel Nomogram for Predicting Early Rebleeding After Endoscopic Treatment of Esophagogastric Variceal Hemorrhage.

Dig Dis Sci. 2024-5

[9]
An imaging-based machine learning model outperforms clinical risk scores for prognosis of cirrhotic variceal bleeding.

Eur Radiol. 2023-12

[10]
Application of computed tomography-based radiomics in differential diagnosis of adenocarcinoma and squamous cell carcinoma at the esophagogastric junction.

World J Gastroenterol. 2022-8-21

引用本文的文献

[1]
Development and validation of a predictive model for 90-day mortality risk after discharge in patients with cirrhosis and esophagogastric variceal bleeding.

Sci Rep. 2025-8-14

本文引用的文献

[1]
Systematic review of machine learning models in predicting the risk of bleed/grade of esophageal varices in patients with liver cirrhosis: A comprehensive methodological analysis.

J Gastroenterol Hepatol. 2024-10

[2]
CIFG-Net: Cross-level information fusion and guidance network for Polyp Segmentation.

Comput Biol Med. 2024-2

[3]
Machine Learning Radiomics Liver Function Model for Prognostic Prediction After Radical Resection of Advanced Gastric Cancer: A Retrospective Study.

Ann Surg Oncol. 2024-3

[4]
A Practical Model for Predicting Esophageal Variceal Rebleeding in Patients with Hepatitis B-Associated Cirrhosis.

Int J Clin Pract. 2023

[5]
An imaging-based machine learning model outperforms clinical risk scores for prognosis of cirrhotic variceal bleeding.

Eur Radiol. 2023-12

[6]
Aberrant Collaterals in Cirrhosis and Challenges in its Management.

J Clin Exp Hepatol. 2023

[7]
A CT-based radiomics nomogram for predicting histopathologic growth patterns of colorectal liver metastases.

J Cancer Res Clin Oncol. 2023-9

[8]
An interpretable artificial intelligence system for detecting risk factors of gastroesophageal variceal bleeding.

NPJ Digit Med. 2022-12-19

[9]
An Adaptive Low-Rank Modeling-Based Active Learning Method for Medical Image Annotation.

Ing Rech Biomed. 2021-10

[10]
Risk stratification in acute variceal bleeding: Comparison of the AIMS65 score to established upper gastrointestinal bleeding and liver disease severity risk stratification scoring systems in predicting mortality and rebleeding.

Dig Endosc. 2020-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索