Wan Shang, Wei Yi, Zhang Xin, Liu Xijiao, Zhang Weiwei, He Yuhao, Yuan Fang, Yao Shan, Yue Yufeng, Song Bin
Department of Radiology, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu 610041, China.
Pharmaceutical Diagnostic team, GE Healthcare, Life Sciences, Beijing 100176, China.
Ann Transl Med. 2020 Mar;8(5):186. doi: 10.21037/atm.2020.01.122.
To explore whether a multiparametric radiomics nomogram on computed tomography (CT) images based on radiomics and relevant parameters of esophageal varices (EV) can be used for predicting the EV severity in patients with cirrhotic livers.
From January 2016 to August 2018, 136 consecutive patients with clinicopathologically confirmed liver cirrhosis were included for the development of a predictive model. The patients were then divided into two groups, including non-conspicuous EV group (mild-to-moderate EV, n=30) and conspicuous EV group (severe EV, n=106) by using the endoscopic validation as the reference standard. The radiomic scores (Rad scores) were constructed using the binary logistic regression model from the radiomics features of regions of interest (ROIs) in the left liver (LL) and right liver (RL), respectively. The multiparametric nomogram combined the best performance Rad-score and EV-relevant factors, and the calibration, discrimination, and clinical usefulness of developed nomogram were evaluated using calibration curves, decision curve analysis (DCA) and net reclassification index (NRI) analysis respectively.
The LL Rad-score calculated from radiomics features was selected with a relatively higher area under the curve (AUC) (AUC; 0.88, training cohort; 0.87, the validation cohort) compared with RL Rad-score (AUC; 0.86, training cohort; 0.83, the validation cohort). In addition, cross-sectional surface area (CSA) was identified as the important predictor (P<0.05), the multiparametric nomogram containing LL Rad-score and CSA was shown to have a better predictive performance and good calibration in the training model (C-index, 0.953, 95% CI, 0.892 to 0.973) and the validation cohort (C-index, 0.938, 95% CI, 0.841 to 0.961), resulting in an improved NRI (categorical NRI of 25.9%, P=0.0128; continuous NRI of 120%, P<0.001) and integrated discriminatory improvement (IDI) (IDI =13.9%, P<0.001). DCA demonstrated that the multiparametric radiomics nomogram was clinically useful.
A multiparametric radiomics nomogram, which incorporates the liver radiomics signature and EV-relevant indices, is a useful tool for noninvasively predicting EV severity and may complement the standard endoscopy for evaluating EV severity in patients with cirrhosis.
探讨基于放射组学及食管静脉曲张(EV)相关参数的计算机断层扫描(CT)图像多参数放射组学列线图能否用于预测肝硬化患者的EV严重程度。
2016年1月至2018年8月,纳入136例经临床病理证实的肝硬化患者以建立预测模型。然后以内镜检查结果为参考标准,将患者分为两组,即不明显EV组(轻度至中度EV,n = 30)和明显EV组(重度EV,n = 106)。分别根据左肝(LL)和右肝(RL)感兴趣区域(ROI)的放射组学特征,采用二元逻辑回归模型构建放射组学评分(Rad评分)。多参数列线图结合了表现最佳的Rad评分和EV相关因素,并分别使用校准曲线、决策曲线分析(DCA)和净重新分类指数(NRI)分析评估所建立列线图的校准、区分能力和临床实用性。
与RL Rad评分(训练队列AUC为0.86,验证队列AUC为0.83)相比,根据放射组学特征计算得到的LL Rad评分具有相对较高的曲线下面积(AUC)(训练队列AUC为0.88,验证队列AUC为0.87)。此外,横截面积(CSA)被确定为重要预测因素(P<0.05),包含LL Rad评分和CSA的多参数列线图在训练模型(C指数为0.953,95%CI为0.892至0.973)和验证队列(C指数为0.938,95%CI为0.841至0.961)中显示出更好的预测性能和良好的校准,导致NRI改善(分类NRI为25.9%,P = 0.0128;连续NRI为120%,P < 0.001)和综合鉴别改善(IDI)(IDI = 13.9%,P < 0.001)。DCA表明多参数放射组学列线图具有临床实用性。
一种结合肝脏放射组学特征和EV相关指标的多参数放射组学列线图是无创预测EV严重程度的有用工具,可能补充标准内镜检查以评估肝硬化患者的EV严重程度。